Đề Xuất 5/2022 # Phân Biệt Odds Ratio & Relative Risk Trong Nghiên Cứu Y Học # Top Like

Xem 8,415

Cập nhật nội dung chi tiết về Phân Biệt Odds Ratio & Relative Risk Trong Nghiên Cứu Y Học mới nhất ngày 22/05/2022 trên website Cuocthitainang2010.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến nay, bài viết này đã thu hút được 8,415 lượt xem.

--- Bài mới hơn ---

  • Những Phần Mềm Soi Odds Chính Xác Nhất Hiện Nay Là Gì?
  • Odds Là Gì ? Chia Sẽ Kiến Thức Cơ Bản Về Phương Pháp Odds
  • Phân Biệt Odds Ratio & Relative Risk
  • Nghiên Cứu Chỉ Ra Những Lợi Ích Mới Của Mật Ong
  • Bắt Ong Dú, Mách Bạn 3 Cách Làm Tổ Bẫy Ong Dễ Thành Công
  • GS. Nguyễn Văn Tuấn

    Giáo sư y khoa, Đại học New South Wales

    Viện nghiên cứu y khoa Garvan, Sydney, Australia

    Tóm tắt: Nhiều công trình nghiên cứu lâm sàng đối chứng ngẫu nhiên (randomized controlled trial – RCT) thường có xu hướng báo cáo kết quả qua chỉ số RR, nhưng cũng có khi OR được sử dụng để mô tả ảnh hưởng của một thuật điều trị hay mối liên hệ giữa hai yếu tố. Sự lựa chọn này dẫn đến hiểu lầm rằng hai chỉ số này giống nhau, và sự hiểu lầm xảy ra ở ngay cả những nhà nghiên cứu có kinh nghiệm. Tuy nhiên, OR không có cùng ý nghĩa với RR. Nói ngắn gọn, OR là một ước số của RR. Trong điều kiện tần số mắc bệnh thấp hay rất thấp (dưới 1%) thì OR RR tương đương nhau, nhưng khi tần số mắc bệnh cao hơn 20% thì OR có xu hướng ước tính RR cao hơn thực tế. Bài này sẽ giải thích những khác biệt quan trọng giữa 2 chỉ số này, và trình bày một cách diễn giải đúng hơn.

    Biểu đồ 1 minh họa cách tính pvalence và incidence.

    Nếu một nghiên cứu cắt ngang được thực hiện tại thời điểm T1 thì tỉ lệ lưu hành ước tính lúc đó là 2/5 = 30%. Nhưng nếu công trình nghiên cứu thực hiện tại thời điểm T2 thì tỉ lệ lưu hành là 3/5 = 60%. Nếu công trình nghiên cứu theo dõi 5 cá nhân đến thời điểm T3, và trong thời gian này có 3 cá nhân mắc bệnh; do đó, tỉ lệ phát sinh trong thời gian này là 3/5 = 60%.

    Khái niệm nguy cơ (risk) và odds

    Trong y khoa, nguy cơ mắc bệnh thực chất là xác suất. Xác suất, như chúng ta biết, là một biến số giữa 0 và 1. Xác suất thực chất là tỉ lệ, tỉ số, và phần trăm. Do đó, thuật ngữ risk trong y khoa có thể có nghĩa là xác suất, tỉ lệ lưu hành, hay tỉ lệ phát sinh.

    Cụm từ nguy cơ, dịch từ chữ risktrong tiếng Anh, có rất nhiều nghĩa trong y khoa. Cần phải phân biệt nguy cơ mắc bệnhbệnh. Khi nói đến ung thư, chúng ta muốn nói đến một sự kiệncho một cá nhân; nhưng khi nói đến nguy cơ ung thư hay cancer risk, chúng ta nói đến nguy cơ xảy ra, nguy cơ phát sinh cho một cá nhân hay một quần thể. Xin nhắc lại, sự kiện khác với nguy cơ sự kiện. Do đó, ung thư khác với nguy cơ ung thư, vì ung thư là một sự kiện mang tính khẳng định (certainty), còn nguy cơ ung thư là một biến số liên tục mang tính bất định (uncertainty). Tất cả chúng ta trong bất cứ thời điểm nào đều có nguy cơ bị bệnh; nhưng có người có nguy cơ cao, có người có nguy cơ thấp.

    Trong tiếng Anh còn có một chữ nữa mà các ngôn ngữ khác như Pháp, Tây Ban Nha, Đức, và ngay cả tiếng Việt cũng không có: đó là chữ odds. Nếu nguy cơ bệnh nhân mắc bệnh là p, thì có một cách nói khác rằng odds mà bệnh nhân đó mắc bệnh so với không mắc bệnh là

    Ví dụ: nếu nguy cơ bệnh nhân bị ung thư trong vòng 5 năm tới là 0.10 (tức 10%) thì odds mà bệnh nhân bị ung thư là 0.1/ (1 – 0.1) = 0.11. Theo định nghĩa này odds không phải là nguy cơhay risk.

    OR và RR: cơ chế tính toán

    OR và RR là hai chỉ số thống kê rất phổ biến và có ích trong nghiên cứu lâm sàng, vì cả hai chỉ số kiểm định mối liên hệ giữa một yếu tố nguy cơ và bệnh tật – một mục tiêu gần như căn bản của nghiên cứu y học hiện đại. Cơ chế tính toán của hai chỉ số này cực kì đơn giản.

    Hãy tưởng tượng một công trình nghiên cứu RCT với 2 nhóm: nhóm được điều trị tích cực với một loại thuốc gồm n1bệnh nhân, và một nhóm chứng (placebo) gồm n2bệnh nhân. Sau một thời gian điều trị, có k1bệnh nhân trong nhóm được điều trị mắc bệnh, và k2bệnh nhân trong nhóm chứng mắc bệnh. Như vậy, tỉ lệ mắc bệnh của nhóm điều trị (kí hiệu p1) và nhóm chứng ( p2) được ước tính như sau:

    : Thay vì sử dụng tỉ lệ phát sinh p để đo lường khả năng mắc bệnh, thống kê cung cấp cho chúng ta một chỉ số khác: đó là odds. Odds như đề cập trên là tỉ số của hai xác suất. Nếu p là xác suất mắc bệnh, thì 1 – p là xác suất sự kiện không mắc bệnh. Theo đó, odds được định nghĩa bằng:

    Với định nghĩa này, chúng ta quay lại với ví dụ vừa trình bày về RR. Odds mắc bệnh trong nhóm được điều trị (kí hiệu odds1) và nhóm chứng (kí hiệu odds2) là:

    Nhìn vào công thức định nghĩa odds, chúng ta dễ dàng thấy nếu tỉ lệ mắc bệnh p thấp (chẳng hạn như 0.001 hay 0.01 – tức 0.1% hay 1%), thì odds≈p. Chẳng hạn như nếu p =0.01, thì 1 – p = 0.99, và do đó odds = 0.01 / 0.99 = 0.010101, tức rất gần với p = 0.01. Quay lại với công thức như sau:

    Như vậy, OR bằng RR. Nhưng cách diễn dịch của OR khác với RR. Bởi vì đơn vị của RR là nguy cơ tử vong, cho nên chúng ta có thể nói rằng nhóm chụp mammography thường xuyên có nguy cơ tử vong cao hơn nhóm đối chứng khoảng 3.4%. Nhưng đơn vị của ORodds, cho nên chúng ta không thể phát biểu về “nguy cơ tử vong”, mà chỉ có thể phát biểu rằng “khả năng” hay odds tử vong của nhóm A cao hơn nhóm B khoảng 3.4%. Ở đây, vì nguy cơ tử vong thấp, cho nên như công thức một nhóm đối tượng, sau đó phân nhóm dựa vào tiền sử có bị phơi nhiễm độc chất hay không. Sau đó, theo dõi cả hai nhóm đối tượng một thời gian (chẳng hạn như 5 năm) và ghi nhận số người bị ung thư. Kết quả của nghiên cứu như thế có thể tóm lược trong Bảng 5 sau đây. Trong số 1000 người được thẩm định bị phơi nhiễm lúc ban đầu, có 20 người (hay 2%) bị ung thư trong thời gian theo dõi; trong số 10,000 người không bị phơi nhiễm AO, có 100 người (tức 1%) bị ung thư sau đó. Như vậy, RR = 0.02/0.01 = 2. Nhưng nếu tính bằng odd thì OR = 2.02. Hai chỉ số này không khác nhau đáng kể.

    Bảng 6. Một nghiên cứu bệnh – chứng (giả tưởng)

    Trong nhóm bệnh nhân, có 10 người (hay 10%) từng bị phơi nhiễm AO; và trong nhóm không ung thư số đối tượng từng bị phơi nhiễm là 5 người (hay 5%). Ở đây, chúng ta không thể tính tỉ lệ phát sinh bệnh (incidence), bởi vì số lượng bệnh nhân và đối chứng đã được xác định trước. Vì không thể ước tính tỉ lệ phát sinh, nghiên cứu bệnh chứng không cho phép chúng ta ước tính RR. Tuy nhiên, chúng ta có thể tính OR, và OR trong trường hợp này là một ước tính chỉ số RR.

    Số liệu Bảng 6 cho thấy odds bị phơi nhiễm trong nhóm bệnh nhân là: 10/90 = 0.1111, và nhóm đối chứng: 0.05263. Do đó, OR = 0.1111 / 0.05263 = 2.11. Thật ra, có thể tính đơn giản hơn bằng công thức “giao chéo”:

    Điểm chính để phân biệt hai hình thức nghiên cứu này là phương pháp chọn mẫu. Với nghiên cứu xuôi thời gian, chúng ta xác định số lượng đối tượng theo yếu tố nguy cơ ngay từ đầu, và số lượng bệnh phát sinh là một số ghi nhận. Ngược lại, với nghiên cứu ngược thời gian, chúng ta xác định số lượng bệnh nhân và đối tượng ngay từ đầu, và số lượng phơi nhiễm yếu tố nguy cơ là số ghi nhận.

    Tuy kết quả nghiên cứu của hai thể loại nghiên cứu được trình bày rất giống nhau: hai cột và hai dòng (2×2 table), nhưng “câu chuyện” đằng sau của các số liệu này rất khác nhau. Không am hiểu câu chuyện đằng sau của một bảng số liệu rất dễ dàng sai lầm trong khi phân tích!

    Tóm tắt

    Tóm lại, cả hai RROR đều là những chỉ số phản ảnh độ tương quan giữa một yếu tố nguy cơ và bệnh; nhưng RR mới là chỉ số chúng ta cần biết (còn OR chỉ là ước số của RR). Cần phải xác định rằng odds không phải là risk hay nguy cơ. Do đó, ý nghĩa của OR rất khó diễn giải. Đây chính là lí do mà một số nhà nghiên cứu đòi “tẩy chai” OR . Trong nghiên cứu cắt ngang hay nghiên cứu theo thời gian, và khi tỉ lệ lưu hành hay tỉ lệ phát sinh bệnh cao thì nên tránh sử dụng OR . OR có thể sử dụng cho tất cả các nghiên cứu bệnh chứng (case-control study), cắt ngang (cross-sectional study), nghiên cứu theo dõi bệnh nhân theo thời gian (prospective study) kể cả nghiên cứu lâm sàng đối chứng ngẫu nhiên (RCT). RR chỉ có thể sử dụng cho các nghiên cứu theo dõi bệnh nhân theo thời gian và nghiên cứu lâm sàng đối chứng ngẫu nhiên. Đối với các nghiên cứu cắt ngang, PRthường được sử dụng để khắc phục những khó khăn trong diễn giải OR.

    Tài liệu tham khảo

    1. Sackett DL, Deeks JJ, Altman DG. Down with odds ratios! Evidence-Based Med 1996; 1: 164-166.

    2. Deeks J. When can odds ratios mislead? Odds ratios should be used only in case-control studies and logistic regression analyses [letter]. British Medical Journal 1998:317(7166);1155-6; discussion 1156-7.

    3. Altman DG, Deeks JJ, Sackett DL. Odds ratios should be avoided when events are common. British Medical Journal 1998;317:1318.

    4. Schmidt CO, Kohlmann T. When to use the odds ratio or the relative risk? International Journal of Public Health 2008; 53:165-7.

    5. Fahey T, Griffiths S and Peters TJ. Evidence-based purchasing: understanding results of clinical trials and systematic reviews. British Medical Journal 1995:311(7012);1056-9; discussion 1059-60.

    6. Greenland S. Interptation and Choice of Effect Measures in Epidemiologic Analyses. American Journal of Epidemiology 1987:125(5);761-767.

    7. Pearce chúng tôi Does the Odds Ratio Estimate in a Case-Control Study? International Journal of Epidemiology 1993:22(6);118

    --- Bài cũ hơn ---

  • Phương Pháp Nghiên Cứu Soi Odds Dụ Kèo Gài
  • Những Vấn Đề Khoa Học Và Ứng Dụng Của Dấu Vân Tay
  • Phương Pháp Nghiên Cứu Của Ngữ Âm Học
  • Cách Viết Bài Tiểu Luận Đường Lối Cách Mạng Của Đảng
  • Thiết Kế Nghiên Cứu Mô Tả
  • Bạn đang đọc nội dung bài viết Phân Biệt Odds Ratio & Relative Risk Trong Nghiên Cứu Y Học trên website Cuocthitainang2010.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100