Đề Xuất 5/2022 # Tài Liệu Phương Pháp Lặp Đơn Và Phương Pháp Newton Kantorovich Giải Hệ Phương Trình Phi Tuyến Tính # Top Like

Xem 10,395

Cập nhật nội dung chi tiết về Tài Liệu Phương Pháp Lặp Đơn Và Phương Pháp Newton Kantorovich Giải Hệ Phương Trình Phi Tuyến Tính mới nhất ngày 22/05/2022 trên website Cuocthitainang2010.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến nay, bài viết này đã thu hút được 10,395 lượt xem.

--- Bài mới hơn ---

  • 2 Cách Replay, Phát Lặp Lại Video Youtube Tự Động
  • 570 Ms Công Cụ Giải Toán Bằng Phương Pháp Lặp
  • Tính Căn Bậc 2 Theo Phương Pháp Newton
  • Học Từ Vựng Hiệu Quả Bằng Phương Pháp Lặp Tự Nhiên
  • Phương Pháp Đo Góc Bằng Như Thế Nào?
  • BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 PHẠM ANH NGHĨA PHƯƠNG PHÁP LẶP ĐƠN VÀ PHƯƠNG PHÁP NEWTON – KANTOROVICH GIẢI HỆ PHƯƠNG TRÌNH PHI TUYẾN LUẬN VĂN THẠC SĨ TOÁN HỌC HÀ NỘI, 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 PHẠM ANH NGHĨA PHƯƠNG PHÁP LẶP ĐƠN VÀ PHƯƠNG PHÁP NEWTON – KANTOROVICH GIẢI HỆ PHƯƠNG TRÌNH PHI TUYẾN Chuyên ngành: Toán Giải Tích Mã số: 60 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: chúng tôi KHUẤT VĂN NINH HÀ NỘI, 2022 – 1 – LỜI CẢM ƠN Luận văn được hoàn thành tại trường Đại học sư phạm Hà Nội 2 dưới sự hướng dẫn của thầy giáo chúng tôi Khuất Văn Ninh. Sự giúp đỡ và hướng dẫn tận tình của thầy trong suốt quá trình thực hiện luận văn này đã giúp tác giả rất nhiều trong cách tiếp cận một vấn đề mới. Tác giả xin bày tỏ lòng biết ơn, kính trọng sâu sắc nhất đối với thầy. Tác giả cũng trân trọng cảm ơn Ban Giám hiệu trường Đại học sư phạm Hà Nội 2, Phòng Sau đại học, các thầy cô giáo trong nhà trường, các thầy cô giáo dạy cao học chuyên ngành Toán Giải tích đã giúp đỡ, tạo điều kiện thuận lợi cho tác giả trong suốt quá trình học tập, nghiên cứu và hoàn thành luận văn. Hà Nội, tháng 11 năm 2022 Tác giả Phạm Anh Nghĩa – 2 – LỜI CAM ĐOAN Tác giả xin cam đoan luận vănThạc sĩ chuyên ngành Toán Giải tích với đề tài: ” Phương pháp lặp đơn và phương pháp Newton – Kantorovich giải hệ phương trình phi tuyến” là công trình nghiên cứu của riêng tác giả dưới sự hướng dẫn của chúng tôi Khuất Văn Ninh. Trong suốt quá trình nghiên cứu và hoàn thành luận văn, tác giả đã kế thừa thành quảkhoa học của các nhà khoa học với sự trân trọng và biết ơn. Hà Nội, tháng 11 năm 2022 Tác giả Phạm Anh Nghĩa – 3 – MỤC LỤC Mở đầu…………………………………………………………………….. 5 Chương 1. Một số kiến thức chuẩn bị……………………………………… 7 1.1. Không gian metric, nguyên lý ánh xạ co…………………………… 7 1.1.1. Không gian metric…………………………………………….. 7 1.1.2. Nguyên lý ánh xạ co…………………………………………….. 18 1.2. Không gian Banach………………………………………………. 20 1.3. Phép tính vi phân trong không gian Banach……………………… 23 Chương 2. Phương pháp lặp đơn, phương pháp Newton – Kantorovich giải hệ phương trình phi tuyến…………………………………………….. 29 2.1.Phương pháp lặp đơn giải hệ phương trình phi tuyến……………………. 29 2.1.1. Phương pháp lặp đơn giải phương trình phi tuyến…………….. ..29 2.1.2. Phương pháp lặp đơn giải hệ phương trình phi tuyến………….. 37 2.2. Phương pháp Newton – Kantorovich giải hệ phương trình phi tuyến………………………………………………………………………. 45 2.2.1. Phương pháp Newton – Kantorovich giải phương trình toán tử phi tuyến ……………………………………………………………………….. 45 2.2.2. Phương pháp Newton – Kantorovich giải hệ phương trình phi tuyến trong n ……………………………………………………………… 51 2.3. Sự kết hợp của phương pháp lặp đơn và phương pháp Newton – Kantorovich giải hệ phương trình phi tuyến ………………………………. 56 Chương 3. Ứng dụng…………………………………………………….. 61 3.1. Giải hệ phương trình phi tuyến ………………………………….. 61 3.1.1. Phương pháp lặp đơn giải hệ phương trình phi tuyến …………. 61 3.1.2. Phương pháp Newton – Kantorovich giải hệ phương trình phi tuyến ……………………………………………………………………….. 64 – 4 – 3.2. Lập trình trên Maple giải số hệ phương trình phi tuyến…………… 75 Kết luận………………………………………………………………………………………….. 88 Tài liệu tham khảo……………………………………………………………………………. 89 – 5 – MỞ ĐẦU 1. Lý do chọn đề tài Như chúng ta đã biết khi giải số phương trình vi phân, phương trình tích phân thường dẫn đến giải hệ phương trình phi tuyến; có nhiều vấn đề, nhiều bài toán trong khoa học tự nhiên, trong kỹ thuật, kinh tế cũng có thể dẫn đến việc nghiên cứu nghiệm của hệ phương trình. Hệ phương trình thường có dạng tổng quát A.x  f (1), trong đó A là các toán tử đi từ không gian định chuẩn  n vào không gian định chuẩn  n . Trong thực tế người ta khó tìm được nghiệm chính xác của hệ phương trình . Vì vậy việc giải xấp xỉ hệ phương trình (1) là một vấn đề được quan tâm nghiên cứu. Có nhiều phương pháp giải xấp xỉ phương trình đã được đề xuất và sử dụng như : Phương pháp lặp,phương pháp Newton và các mở rộng, phương pháp biến phân ….Người ta xét đến những đặc thù của toán tử Ađể chọn phương pháp xây dựng nghiệm xấp xỉ của phương trình. Phương pháp lặp dựa trên nguyên lí ánh xạ co Banach là phương pháp thường được sử dụng để chứng minh sự tồn tại nghiệm của phương trình và tìm nghiệm xấp xỉ thông qua phép lặp đơn. Để sử dụng phương pháp này người ta phải đưa phương trình (1) về dạng x = Bx trên một hình cầu đóng nào đó hoặc trên toàn không gian  n , sao cho nghiệm của phương trình (1) là điểm bất động của ánh xạ B. Bước tiếp theo là tìm điểm bất động của ánh xạ đó. Nguyên lí điểm bất động cũng chỉ ra cách tìm xấp xỉ điểm bất động. Phương pháp Newton và các mở rộng của nó như Newton – Raphson, Newton – Kantorovich cho ta cách tìm nghiệm xấp xỉ của một phương trình phi tuyến thông qua việc giải những phương trình tuyến tính. Phương pháp Newton và các mở rộng có ưu điểm là bậc hội tụ cao, tuy nhiên phải biết thông tin về một hình cầu đủ nhỏ chứa nghiệm. – 6 – Với mong muốn tìm hiểu và nghiên cứu sâu hơn về các phương pháp giải xấp xỉ hệ phương trình (1), nên em đã chọn đề tài : ” Phương pháp lặp đơn và phương pháp Newton – Kantorovich giải hệ phương trình phi tuyến” để thực hiện luận văn của mình. 2. Mục đích nghiên cứu Luận văn trình bày một số phương pháp giải hệ phương trình đó là phương pháp lặp đơn, phương pháp Newton – Kantorovich, sự kết hợp của hai phương pháp đó trong giải phương trình trong tập số thực  và hệ phương trình phi tuyến trong không gian  n . Ứng dụng giải một số phương trình và hệ phương trình cụ thể. 3. Nhiệm vụ nghiên cứu Nghiên cứu phương pháp lặp đơn, phương pháp Newton – Kantorovich giải phương trình và hệ phương trình phi tuyến. 4. Đối tượng và phạm vi nghiên cứu – Đối tượng nghiên cứu: Phương pháp giải hệ phương trình phi tuyến. – Phạm vi nghiên cứu: Phương pháp lặp đơn, phương pháp Newton – Kantorovich, sự kết hợp của hai phương pháp đó hệ phương trình phi tuyến trong không gian  n ; ứng dụng vào giải các phương trình và hệ phương trình cụ thể. 5. Phương pháp nghiên cứu – Vận dụng các kiến thức, phương pháp của Giải tích hàm, Giải tích số và áp dụng phần mềm Maple trong tính toán và vẽ đồ thị . 6. Dự kiến đóng góp của đề tài Hệ thống lại phương pháp lặp đơn và phương pháp Newton – Kantorovich giải phương trình và hệ phương trình phi tuyến. Áp dụng giải một số hệ phương trình phi tuyến cụ thể. – 7 – CHƯƠNG I MỘT SỐ KIẾN THỨC CHUẨN BỊ 1.1 Không gian metric, nguyên lý ánh xạ co 1.1.1.Không gian metric Định nghĩa 1.1.1. Xét một tập hợp X   cùng với một ánh xạ d : X  X   thoả mãn các tiên đề sau đây: 1) d  x, y   0,(x, y  X) , d  x, y  0  x  y ( tiên đề đồng nhất); 2) d  x, y   d  y, x  ,(x, y  X) ( tiên đề đối xứng); 3) d  x, y   d  x, z   d  z, y  ,  x, y, z  X  ( tiên đề tam giác). Khi đó tập hợp X cùng với ánh xạ d gọi là một không gian metric. Ánh xạ d gọi là một metric trên X , số d  x, y  gọi là khoảng cách giữa hai phần tử x, y . Các phần tử của X gọi là các điểm; các tiên đề 1), 2), 3) gọi là hệ tiên đề metric. Không gian metric được kí hiệu là X   X,d  . Định nghĩa 1.1.2. Cho không gian metric X   X,d  . Một tập con bất kỳ X0   của tập hợp X cùng với metric d trên X lập thành một không gian metric. Không gian metric X 0   X 0 , d  gọi là không gian metric con của không gian metric đã cho. Ví dụ 1.1.1. Với hai phần tử bất kỳ x,y ∈ℝ ta đặt: d  x, y   x  y (1.1.1) Từ tính chất của giá trị tuyệt đối trong tập hợp số thực ℝ, suy ra hệ thức (1.1.1)xác định một metric trên  , không gian tương ứng được ký hiệu là 1 .Ta gọi metric (1.1.1) là metric tự nhiên trên  . – 8 – Ví dụ 1.1.2. Với hai phần tử bất kỳ x   x1 , x 2 ,…, x k  , y   y1 , y2 ,…, yk  thuộc không gian véc tơ thực k chiều  k ( k là số nguyên dương nào đó) ta đặt: k d  x, y   x 2 j  y j  (1.1.2) j1 Dễ dàng thấy hệ thức (1.1.2) thoả mãn các tiên đề 1), 2) về metric. Để kiểm tra hệ thức (1.1.2) thoả mãn tiên đề 3) về metric, trước hết ta chứng minh bất đẳng thức Cauchy – Bunhiacopski: Với 2k số thực a j ,bj ,  j  1, 2,…, k  ta có k k Thật vậy k  a 2j .  a jb j  j1 j1 b j1 2 j (1.1.3) k  k k k k k k k 2 0     a i b j  a jbi     a i2 b2j  2 a i bi a jb j   a 2j bi2 i 1  j1 i 1 j1 i 1 j1  i1 j1 2  k  k   k   2   a 2j    b 2j   2   a j b j    j1   j1   j1 Từ đó suy ra bất đẳng thức (1.1.3). Với 3 véc tơ bất kỳ x   x1 , x 2 ,…, x k  , y   y1 , y2 ,…, yk  , z   z1 , z2 ,…, zk  thuộc  k ta có : 2 k 2 k d  x, y     x j  y j     x j  z j    z j  y j   j1 k j1 2 k k j1 j1 2    x j  z j   2  x j  z j  z j  y j     z j  y j  j1 = d2  x, z   2d  x, z  d  z, y   d2  z, y  2   d  x, z   d  z, y    d  x, y   d  x, z   d  z, y  Do đó hệ thức (1.1.2) thoả mãn tiên đề 3) về metric. – 9 – Vì vậy hệ thức (1.1.2) xác định một metric trên không gian  k . Không gian metric tươg ứng vẫn ký hiệu là  k và thường gọi là không gian Euclide, còn metric (1.1.2) gọi là metric Euclide.  Ví dụ chúng tôi ký hiệu  2 là tập tất cả các số thực hoặc phức x  x n n 1 sao 2  cho chuỗi số dương  x n hội tụ . n 1   Với hai dãy số bất kỳ x  x n n 1 , y  yn n 1 ta đặt  d  x, y   x 2 n  yn (1.1.4) n 1 Hệ thức (1.1.4) xác định một ánh xạ d :  2   2   . Thật vậy, với mọi n  1, 2,… ta có 2 2 2  2 x n  yn  x n2  2x n .yn  y2n  x n  2 x n . yn  yn  2 x n  yn 2  Do đó mọi số p dương đều có 2 p  n 1 Suy ra p 2 p 2 2   x n  y n  2 x n  2 y n  2 x n  2 y n n 1 2   n 1 2  n 1 2 n 1 2 x n  2 y n  x n  y n  2 n 1 n 1 n 1 Nghĩa là chuỗi số trong vế phải của hệ thức (1.1.4) hội tụ. Dễ dàng thấy hệ thức (1.1.4) thoả mãn các tiên đề 1), 2) về metric.    Với ba dãy số bất kỳ x  x n n 1 , y  yn n 1 , z  zn n 1 thuộc  2 và với số p nguyên dương tuỳ ý ta có: p 1 2 p   2  x n  yn     x n  z n  z n  yn  n 1   n 1  2 1 2    – 10 – 1 1 2 2  p  p 2 2   x n  z n     z n  y n  .   n 1   n 1 Cho p   ta được  1 2 1 2   1 2    2 2 2 d(x, y)    x n  y n     x n  z n     z n  y n   d  x, z   d  z, y   n 1   n 1   n 1  Do đó hệ thức (1.1.4)thoả mãn tiên đề 3) về metric. Vì vậy hệ thức (1.1.4) xác định một metric trên  2 . Không gian metric tương ứng vẫn ký hiệu là  2 . Không gian metric  2 đôi khi còn gọi là không gian Euclide vô hạn chiều. Ví dụ 1.1.4. Ta ký hiệu C a ,b  là tập tất cả các hàm số giá trị thực xác định và liên tục trên đoạn a,b ,    a  b   . Với hai hàm số bất kỳ x  t  , y  t   Ca,b ta đặt d  x, y   max x  t   y  t  . (1.1.5) atb Vì các hàm x  t  , y  t  liên tục trên đoạn a,b , nên hàm số x  t   y  t  cũng liên tục trên đoạn a,b .Do đó hàm số này đạt giá trị lớn nhất trên đoạn a,b . Suy ra hệ thức (1.1.5) xác định một ánh xạ từ Ca ,b   Ca ,b   . Dễ dàng thấy ánh xạ (1.1.5) thoả mãn các tiên đề về metric. Không gian metric tương ứng vẫn kí hiệu là C a ,b  . Ví dụ 1.1.5. Ta ký hiệu L a ,b  là tập tất cả các hàm số giá trị thực và khả tích Lebesgue trên đoạn a,b .Với hai hàm số bất kỳ x  t  , y  t   La ,b ta đặt b d  x, y    x  t   y  t  dt a Hệ thức (1.1.6) xác định một ánh xạ từ L a ,b   L a ,b    . (1.1.6) – 11 – Với hai hàm số bất kỳ x  t  , y  t   La ,b ta có b x  t   y  t   0, t   a, b  d  x, y    x  t   y  t   0 a b d  x, y  0   x  t   y  t   0 a  x  t   y  t   0 h.k.n trên  a,b  x  t   y  t  h.k.n trên  a, b. Vì tích phân Lebesgue của một hàm số không thay đổi khi ta thay đổi giá tri của hàm số đó trên tập có độ đo Lebesgue bằng 0, nên trong không gian La, b ta đồng nhất hai hàm số khi chúng chỉ khác nhau trên một tập có độ đo Lebesgue bằng 0. Nhờ đó ánh xạ (1.1.6) thoả mãn tiên đề 1) về metric. Dựa vào các tính chất của tích phân Lebesgue dễ dàng suy ra ánh xạ (1.1.6) thoả mãn các tiên đề 2), 3) về metric. Vì vậy ánh xạ (1.1.6) xác định một metric trên tập L a ,b  . Không gian tương ứng vẫn ký hiệu là L a ,b  . Định nghĩa chúng tôi không gian metric X   X,d  ,dãy điểm xn   X , điểm x 0  X . Dãy điểm x n  gọi là hội tụ tới điểm x 0 trong không gian X khi n  , nếu   0, n0  N* , n  n0 , d(xn ,x0 )   . x n  x 0 hay xn  xo (n ) Kí hiệu: xlim  Điểm x o còn gọi là giới hạn của dãy x n  trong không gian X. Ví dụ 1.1.6. Sự hội tụ của một dãy điểm x n  trong không gian 1 là sự hội tụ của dãy số thực đã biết trong giải tích toán học. Ví dụ 1.1.7. Sự hội tụ của một dãy điểm trong không gian Eukleides  k tương đương với sự hội tụ theo toạ độ. – 12 – Thật vậy, giả sử dãy điểm x  n    x1 n  , x 2n  ,…, x kn   , n  1, 2,… hội tụ tới điểm x   x1 , x 2 ,…, x k  trong  k . Theo định nghĩa ,   0, n0  * , n  n0 , ta có:  k    x   x  d xn , x  n j 2 j  j1 Suy ra x jn   x j  , n  n 0 , j  1, 2,3,…, k (1.1.7) Các bất đẳng thức (1.1.7) chứng tỏ , với mỗi j  1, 2,…, k dãy số thực x jn   hội tụ tới số thực x j khi n  . Sự hội tụ đó được gọi là sự hội tụ theo toạ độ . Ngược lại, giả sử dãy điểm x  n    x1 n  , x 2n  ,…, x kn   , n  1, 2,… hội tụ theo toạ độ 0 , với mỗi j  1, 2,…, k , tới điểm x   x1, x 2 ,…, x k  . Theo định nghĩa ,  n j  * , n  n j , x jn   x j   . n n Đặt n0  max n1, n 2 ,…, n k  , thì n  n0 , x j  x j    x jn   x j  2  k 2 ,  j  1, 2,…, k    x jn   x j n j1   2  , j  1, 2,…, k n k  2    x   x  n j j 2   , n  n0 . j1 Do đó dãy điểm đã cho hội tụ theo metric Euclide của không gian  k . Ví dụ 1.1.8. Sự hội tụ của một dãy điểm trong không gian C a ,b  tương đương với sự hội tụ đều của dãy hàm liên tục trên đoạn a,b . Thật vậy, giả sử dãy hàm  x n  t    Ca,b hội tụ tới hàm x  t  trong không gian C a ,b  . Theo định nghĩa   0, n 0  N* , n  n 0 , d  x n , x   max x n  t   x  t    atb Suy ra : xn  t   x  t   , n  n0 , t  a,b (1.1.8) – 13 – Các bất đẳng thức (1.1.8) chứng tỏ dãy hàm số liên tục  x n  t   hội tụ đều tới hàm số x  t  trên đoạn  a, b. Ngược lại, giả sử hàm số  x n  t    Ca,b hội tụ đều tới hàm số x  t  trên đoạn a, b , nghĩa là x  t   Ca,b . Theo định nghĩa sự hội tụ đều của dãy hàm   0,  n 0  N * , n  n 0 ,  t   a, b  , x n  t   x  t    x n  t   x  t   , n  n 0 Suy ra: max a t b Hay : d  x n , x   , n  n 0 Do đó dãy số  x n  t   hội tụ tới hàm số x  t  theo metric của không gian C a ,b  . Ví dụ 1.1.9. Sự hội tụ của dãy điểm trong không gian metric rời rạc X  (X, d) tương đương với sự hội tụ của dãy dừng. Thật vậy, giả sử dãy điểm xn   X hội tụ đến điểm x trong không gian X. * Theo định nghĩa,   0,   1, n0  N , n  n0 ,d  x n , x   . Suy ra d  x n , x   0, n  n0  x n  x, n  n 0 . Dãy điểm như thế gọi là dãy dừng. * Ngược lại, dãy điểm xn   X là dãy dừng, nghĩa là n0  N , n  n0 , xn  xn 0 , thì hiển nhiên dãy đó hội tụ theo metric của không gian X . Định nghĩa 1.1.4. Cho không gian metric X   X,d  , a  X , r  0 , Tập hợp S(a, r)  x  X : d  x, a   r được gọi là hình cầu mở tâm a, bán kính r. Tập hợp S'(a, r)  x  X : d  x, a   r được gọi là hình cầu đóng tâm a, bán kính r. Mỗi hình cầu mở S(a, r) được gọi là một lân cận của phần tử a trong X . – 14 – Định nghĩa chúng tôi hai không gian metric X  (X,d1 ) , Y  (Y,d2 ). Ánh xạ f : X  Y được gọi là liên tục tại điểm x0  X nếu như   0,   0 , sao cho x  X thoả mãn d1(x, x0 )   thì d2 (f (x),f (x0 ))   . Hay nói cách khác Ánh xạ f : X  Y gọi là liên tục tại điểm xo  X , nếu với lân cận cho trước tuỳ ý Uf (x )  S y0 ,    Y của điểm y0  f  x 0  trong Y 0 tìm được lân cận Vx  S x0 ,  của điểm x 0 trong X sao cho f(Vx )  Uy . 0 0 0 Định nghĩa 1.1.6. Ánh xạ f : X  Y gọi là liên tục tại điểm x0  X nếu với mọi dãy điểm xn   X hội tụ tới điểm x 0 trong X kéo theo dãy điểm  f (x n )  hội tụ tới điểm f  x0  trong Y. x n  x 0 và f  x  là hàm liên tụctại điểm x0  X thì Như vậy nếu: nlim  lim f  x n   f  x 0  . n  Định nghĩa 1.1.7.Ánh xạ f gọi là liên tục trên tập A  X nếu ánh xạ f liên tục tại mọi điểm x  A. Khi A  X thì ánh xạ f gọi là liên tục. Định nghĩa 1.1.8. Ánh xạ f gọi là liên tục đều trên tập A  X nếu   0,   0 sao cho  x, x ‘  A thoả mãn d1 (x, x ‘)   thì d2 (f (x),f (x ‘))  . Định nghĩa 1.1.9.Một dãy điểm x n  trong không gian metric X   X,d  gọi lim d(x n , xm )  0 Nghĩa là   0 , là một dãy Cauchy hay dãy cơ bản nếu: m,n  n0 * sao cho d(x n , x m )  , n, m  n0 ( Rõ ràng mọi dãy hội tụ đều là dãy Cauchy). Định nghĩa 1.1.10.Không gian metric X= (X,d) là một không gian đầy (hay đủ) nếu mọi dãy cơ bản trong không gian này đều hội tụ. – 15 – Ví dụ 1.1.10.Không gian metric 1 là không gian đầy, điều đó suy ra từ tiêu chuẩn Cauchy về sự hội tụ của dãy số thực đã biết trong giải tích toán học. Ví dụ 1.1.11. Không gian  k là không gian đầy. Thật vậy, giả sử x  n    x1 n  , x 2n  ,…, x kn   , n  1, 2,… là dãy cơ bản tuỳ ý trong không gian Euclide  k . Theo định nghĩa dãy cơ bản,    0, n 0  N* , m, n  n 0 , d x   , x   x j   x j n m n m k    hay   x    x   n j m j 2  j1 (1.1.9)  , m, n  n 0 , j  1, 2, …, k Các bất đẳng thức (1.1.9) chứng tỏ, với mỗi j  1, 2,…, k , dãy  x jn   là dãy số thực cơ bản, nên phải tồn tại giới hạn: lim x jn   x j , ( j  1, 2,…, k). n  Đặt x   x1, x 2 ,…, x k  , ta nhận được dãy x  n     k đã cho hội tụ theo toạ độ tới x . Nhưng sự hội tụ trong không gian Euclide  k tương đương với sự hội tụ theo toạ độ, nên dãy cơ bản x  n   đã cho hội tụ tới x trong không gian  k . Vậy không gian Euclide  k là không gian đầy. Ví dụ 1.1.12. Không gian C a ,b  là không gian đầy. Thật vậy, giả sử  x n  t   là dãy cơ bản tuỳ ý trong không gian C a ,b  , theo định nghĩa dãy cơ bản:     0 ,  n 0  N * ,  m, n  n 0 , d x  n  , x  m   max x n  t   x m  t    a tb  x n  t   x m  t   , m, n  n0 , t  a, b . (1.1.10) Các bất đẳng thức (1.1.10) chứng tỏ , với mỗi t cố định tuỳ ý thuộc đoạn a,b , dãy  x n  t   là dãy số thực cơ bản , nên phải tồn tại giới hạn – 16 – lim x n  t   x  t  , t  a, b n Ta nhận được hàm số x  t  xác định trên đoạn a,b . Vì các đẳng thức (1.1.10) không phụ thuộc t, nên qua giới hạn trong các đẳng thức này khi n  ta được: x n  t   x  t   , n  n 0 , t  a, b  (1.1.11) Các bất đẳng thức (1.1.11) chứng tỏ dãy hàm số  x n  t    Ca,b hội tụ đều tới hàm số x  t  trên đoạn  a,b nên x  t   Ca,b . Nhưng sự hội tụ trong không gian C a ,b  tương đương với sự hội tụ đều của dãy hàm liên tục trên đoạn a,b , nên dãy cơ bản  x n  t   đã cho hội tụ tới x  t  trong không gian C  a ,b  . Vậy C a ,b  là không gian đầy. Ví dụ 1.1.13. Không gian  2 là không gian đầy. Thật vậy, giả sử x  n    x1 n  , x 2n  ,…, x kn   , n  1, 2,… là dãy cơ bản tuỳ ý trong  2 , theo định nghĩa dãy cơ bản :      x   x     0, n 0  N* , m, n  n 0 , d x  n  , x  m   n k m k 2  . k 1 Suy ra p   x   x m k n k k 1 x k   x k n m  2  , m, n  n 0 , p  1, 2,… (1.1.12)  , m, n  n 0 , k  1, 2,… (1.1.13) Các bất đẳng thức (1.1.13) chứng tỏ, với mỗi k cố định tuỳ ý dãy  x kn   là dãy số cơ bản, nên phải tồn tại giới hạn: nlim  xkn    x k , k  1, 2,…  – 17 – Đặt x   x1 , x 2 ,…, x k ,…   x k  . Vì các bất đẳng thức (1.1.12) không phụ thuộc vào p , nên có thể cho qua giới hạn trong các bất đẳng thức này khi m   ta được: p  x   x n k 2  , n  n 0 , p  1, 2,… k k 1 (1.1.14) Tiếp tục cho qua giới hạn trong các bất đẳng thức (1.1.14) khi p   ta được  2  xkn   x k  , n  n0 Mặt khác k 1  2 x k  x k  x kn   x kn  2  x n k (1.1.15)  x k  x kn  2  2 2  2 x kn   2 x kn   x k ,  k, n  1, 2,… (1.1.16) Từ các bất đẳng thức (1.1.15), (1.1.16) suy ra: p  p 2 k 1 k 1   p 2 2 x k  2 x kn1   2 x kn1   x k k 1  n1   2 x k k 1 2 2   n1   2 k 1  2  2 x k  x k  2 x kn1   2 2 , với n1  n 0 k 1 2   x k  2 x k 1   2 2 , với n1  n 0 k 1 n k 1 Do đó dãy x   x k   2 .Các bất đẳng thức (1.1.15) chứng tỏ, dãy cơ bản  x   đã cho hội tụ tới x  trong không gian  n 2 Vì vậy không gian  2 là không gian đầy. 2 . – 18 – 1.1.2. Nguyên lý ánh xạ co Định nghĩa 1.1.11. Cho không gian metric X  (X, d) .Ánh xạ A : X  X được gọi là ánh xạ co nếu tồn tại số α, 0    1 sao cho: d(Ax1,Ax2 )  d(x1, x2 ), x1 , x 2  X. Định lý 1.1.1.( Nguyên lý Banach về ánh xạ co) Mọi ánh xạ co A từ không gian metric đầy X  (X, d) vào chính nó đều có một điểm bất động duy nhất, nghĩa là tồn tại duy nhất một điểm x*  X sao cho Ax*  x* ; điểm x* là giới hạn của dãy x n  được xây dựng bởi công thức: x n  Ax n 1 , x 0 tuỳ ý, x 0  X và công thức đánh giá sai số d(x n , x * )  d(x n , x * )  n d(x1 , x 0 ), n  1, 2,… 1   d(x n , x n 1 ) , n  1, 2,… 1  Trong đó  là hệ số co của ánh xạ co A. Chứng minh. Lấy một điểm bất kỳ x0  X . Xây dựng dãy x n  xác định bởi công thức: x n  Ax n 1 , n  1, 2,… Ta được d(x2 , x1 )  d(Ax1,Ax0 )  d(x1, x0 )  d(Ax0 , x0 ) 2 d(x 3 , x 2 )  d(Ax 2 , Ax1 )  d(x 2 , x1 )   d(Ax 0 , x 0 ) … n d(x n 1 , x n )  d(Ax n , Ax n 1 )  d(x n , x n 1 )  …   d(Ax 0 , x 0 ) ,với n  1, 2, … Từ đó ta suy ra  n, p  1, 2,… ta có

    --- Bài cũ hơn ---

  • Học Từ Vựng Bằng Phương Pháp Lặp Lại Ngắt Quãng
  • Phương Pháp Lặp Lại Ngắt Quãng: Đọc Nhanh, Hiểu Sâu, Nhớ Lâu
  • Hạch Toán Và Sơ Đồ Kế Toán Hàng Hóa Theo Phương Pháp Kktx
  • Kế Toán Tổng Hợp Nguyên Vật Liệu Theo Phương Pháp Kê Khai Thường Xuyên
  • Phân Biệt Phương Pháp Kê Khai Thường Xuyên Và Kiểm Kê Định Kỳ
  • Bạn đang đọc nội dung bài viết Tài Liệu Phương Pháp Lặp Đơn Và Phương Pháp Newton Kantorovich Giải Hệ Phương Trình Phi Tuyến Tính trên website Cuocthitainang2010.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100