Giải Bài Tập Phương Pháp Tính
--- Bài mới hơn ---
Published on
Bài tập tiểu luận môn phương pháp tính, tùy không giải hết tất cả nhưng vẫn đủ để các bạn tìm hiểu.
- 8. Vậy: ( ) ( ) ( ) ( )4;5 5 max ‘ 0,3136 1 23ln 2x q xj Î = = ” < . Vậy hàm ( )xj thỏa mãn yêu cầu của phương pháp lặp. Chọn x0= 4 5 4,5 2 + = . Tính các giá trị x1,x2,… theo công thức lặp ( ) ( )1 2log 5 3 , 1,2,…n nx x x nj -= = + = Ta nhận được dãy lặp này hội tụ và có đánh giá sai số
- 17. Page 18 0 1 -4 15 16 3 E5 (2) = E5- 5E1 (2) 1 0 0 0 0 5 3 0 0 0 -3 -18 53 0 2 2 12 -43 4 11 4 15 -50 12 11 4 15 -39 -8 -2 E1 (2) E2 (2) E3 (3) = E3 (2) -16/3 E2 (2) E4 (3) = E4 (2) +2/3 E2 (2) E5 (3) = E5 (2) -1/3 E2 (2) 0 0 0 669/53 683/53 -50 E5 (4) = E5 (3) -2/53E3 (3) 0 0 0 0 5296/669 9262/669 E5 (5) = E5 (4) -212/669 E4 (3) 0 0 0 0 1 1,7488867 E5 (6) = 669/9262E5 (5) Từ bảng suy ra: 1 2 3 4 1 2 3 4 2 3 4 3 4 4 5 5 5 3 2 2,995468 298,165171 3 18 12 11,233006 66,009304 53 43 48,443353 6,794000 4 28,989641 7,247410 1,748867 1,748867 x x x x x x x x x x x x x x x x + – + = – = -ì ì ï ï- + = – =ï ïï ï – = Û =í í ï ï= – = – ï ï ï ï= =îî Bài 2: c/(Trần Đình Trọng) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 10 2 3 0 10 2 5 2 3 20 10 3 2 20 15 x x x x x x x x x x x x x x x x – – + =ì ï – – + =ï í + + – = -ï ï + + + =î với sai số ε=10-3 (C)
- 19. Page 20 k x1 (k) x2 (k) x3 (k) x4 (k) ( ) ( 1)3 2 k k X X – ¥ – 0 0 5 -10 15 1 3 3 -10 15 4,5 2 2,8 3,3 -10 14,5 0,75 3 2,68 3,38 -10,1 14,5 0,18 4 2,668 3,378 -10,1 14,53 0,018 5 2,6768 3,3708 -10,094 14,534 0,0132 6 2,67848 3,37028 -10,0932 14,5322 2,7.10-3 7 2,678048 3,370728 -10,0936 14,53172 7,2.10-4 Giải thích cột sai số(cột cuối): { }(1) (1) (0) (1) (0) 1 4 3 3 3 max max 3; 2;0;0 2 2 2 4,5i i i X X X X Xa ¥ ¥ £ £ – £ – = – = – = { }(2) (2) (1) (2) (1) 1 4 3 3 3 max max 0,2;0,3;0;0,5 2 2 0,7 2 5 i i i X X X X Xa ¥ ¥ £ £ – £ – = – = = { }(3) (3) (2) (3) (2) 1 4 3 3 3 max max 0,12;0,0 0, 8;0,1;0 1 2 2 2 8 i i i X X X X Xa ¥ ¥ £ £ – £ – = – = =
- 21. Page 22 (7) (7) (6) ( 34 4 7) 3 4,4.10 7,2.1 ‘ ‘ 1,16.10 1,0 2.10 X X X Xa a ¥ — ¥ – ¥ – – £ – + – £ + = ” Vậy nghiệm của hệ: 3 3 2 3 1 3 3 4 2,678 1, 3,371 1, 10,094 2.10 2.10 2.10 2.1 1, 14,53 02 1, a a a a – – – – = ± ± = – ± = ± ì ï =ï í ï ïî j/(Trần Đình Trọng) 2 40 6 4 8 8 3 12 9 50 3 3 75 15 18 29 65 18 0 4 14 2 5 26 19 25 120 23 x y z u v x y z u v x y z u v x y z u v x y z u v + – + + =ì ï- – – + + =ïï – + – + + =í ï + + + + = – ï + – + + =ïî với sai số ε=10-2 (D) · Kiểm tra hệ có nghiệm duy nhất: Ta có det 2 40 6 4 8 3 12 9 50 3 01 1 75 15 18 65 18 0 4 14 5 26 19 25 120 1030066610 -é ù ê ú- – – ê ú ê ú = ¹- – ê ú ê – ú ê ú-ë û Vậy hệ đã cho có 1 nghiệm duy nhất. · Biến đổi hệ (C) ta được: 2 40 6 4 8 65 18 0 4 14 3 12 9 50 3 2 40 6 4 8 1 1 75 15 18 1 1 75 15 18 65 18 0 4 14 3 12 9 50 3 5 26 19 25 120 5 26 19 25 120 -é ù é ù ê ú ê ú- – – – ê ú ê ú ê ú ê úÛ- – – – ê ú ê ú – – -ê ú ê ú ê ú ê ú- -ë û ë û
- 23. Page 24 3 -0,35597 11,44787 34,01576 8,020642 -21,8833 0,97097473 4 -0,50096 11,69475 34,13395 8,161962 -21,7461 0,420379334 5 -0,54839 11,6782 34,0971 8,22556 -21,8054 0,108289073 6 -0,56061 11,68051 34,11103 8,215659 -21,8191 0,023700441 7 -0,56368 11,68694 34,11417 8,218816 -21,8148 0,010947412 8 -0,56473 11,68639 34,11305 8,220483 -21,8163 0,002839241 · Giải thích cột sai số(cột cuối): { } { } (1) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) 63 37 63 max , , , , 37 63 max 5,78;8,75;5,57;7,8;4,08 14,8986 37 X X X x x y y z z u u v v a ¥ ¥ – £ – = – – – – – = = { } { } (2) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) 63 37 63 max , , , , 37 63 2,0204max ;0,4715 1,1245 2,511 2,4406 4,275486; ; ; 37 X X X x x y y z z u u v v a ¥ ¥ – £ – = – – – – – = = { } { } (3) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) 63 37 63 max , , , , 37 63 ma 0,55557;0,169365;0,570255;0,29036;0,52268 0,970975x 37 X X X x x y y z z u u v v a ¥ ¥ – £ – = – – – – – = =
- 25. Page 26 Làm tròn số: (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) ‘0,56473 0,56 11,68639 11,69 ‘34,11305 34,11 8,220483 8,22 21,8163 21,82 ‘ ‘ ‘ y y u u v x x z z v ì ï = = =- ” – = ” = =” “= ï ï í ï = ï ï =î – “-= Sai số làm tròn (8) (8) ‘ X X- = (0,004729733; 0,003609616; 0,003048546; 0,000483331; 0,003737181) (8) (8) ‘ XX ¥ – =0,004729733 Từ cột cuối và dòng cuối của bảng, ta có: (8) (8) (7) 0,00283 63 37 9241X X Xa ¥ ¥ – £ – = Sai số cuối cùng: (8) (8) (7) (8) 3 0,004729733 0,00283924 ‘ ‘ 7,57.1 10 X X X Xa a ¥ ¥ ¥ – – £ – + – £ + ” Vậy nghiệm của hệ: 3 3 2 3 3 4 3 5 1 3 7,57.10 7,57.10 7,57 0,5 .10 6 11,69 34,11 8,22 21,82 7,57.10 7,57.10 a a a a a – – – – – ì ï =ï = – ± ± = ± ï = ± – ± í ï ï =ïî Bài 3 c/(Trần Đình Trọng)
- 27. Page 28 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) 1 2 3 ( 1) ( 1) 2 3 1 3 2 3 3 2 ( 1) ( 1) ( 1) 3 1 2 2 3 3 2 1 1 1 8 8 8 1 16 1 5 5 5 1 16 1 1 1 1 5 5 5 8 8 8 9 1 129 40 40 40 7 1 1 4 4 4 7 1 1 1 1 1 9 1 129 4 4 8 8 8 4 40 40 40 kk k kk k k k k k k k k k k k k k x x x x x x x x x x x x x x x x x x + + + + + + = + – – – = + + – – æ ö = + + + -ç ÷ è ø – Û = – + – – = + – – – -æ ö æ ö = + + – – – +ç ÷ ç ÷ è ø è ø = ( ) ( ) 2 3 101 1 1 40 40 40 k k x x ì ï ï ï ï ï ï ï ï ï í ï ï ï ï ï ï ï -ï – +ïî ( ) ( ) ( ) ( 1) 11 ( 1) 2 2 ( 1) 3 3 1 1 1 0 8 8 8 1 9 129 0 40 40 40 1 1 101 0 40 40 40 kk kk k k xx x x x x + + + é ù é ù -ê ú ê úé ùé ù ê ú ê úê úê ú – -ê ú ê úÛ = +ê úê ú ê ú ê úê úê ú ê ú ê úê úë û – -ë ûê ú ê ú ê ú ê úë û ë û Hay ( )( 1) kk x Bx c+ = + (3.3) Với B= ( ) ( ) ( ) 1 ( ) 2 3 1 1 0 8 8 1 9 1 129 101 0 , ; ; , 40 40 8 40 40 1 1 0 40 40 k T kk k x c x x x é ù ê ú é ù ê ú ê ú- – -æ öê ú = – = ê úç ÷ê ú è ø ê ú ê ú ê ú- ë ûê ú ê úë û Ta có: { }max 0,25;0,25;0,05 0,25 1B ¥ = = < vậy ma trận B thỏa điều kiện hội tụ. Đánh giá sai số
- 29. Page 30 (3) (3) 1 (3) (3) 2 (3) 3) 3 3 1 2 ( 0,006 0,006 ‘ 3,7357 3,736 ‘ 2,685 2,685 ‘ x x x x x x ” = ” = – ” – ì = = = = ï í ï î Sai số làm tròn (3) (3) ‘x x- = (0;3.10-4 ;0) (3) (3) ‘x x ¥ – =3.10-4 Từ cột cuối và dòng cuối của bảng, ta có: (3) (3) (2) (3) (2) 1 3 3 1 0,001 1 m 10 ax 3 3 i i i x x x x xa – ¥ ¥ £ £ – £ – = – == Sai số cuối cùng: (3) (3) (2) (3) 4 3 3 3. ‘ ‘ 10 1,3.1010 x x x xa a – ¥ ¥ ¥ – – – £ – + – £ + ” Vậy nghiệm của hệ: 3 1 3 3 3 2 ,3.10 ,3.10 0,00 ,3.10 6 1 3,736 1 2,685 1 a a a – – – = ± ± = ì ï = – í ± ï ï ïî
- 31. Page 32 ( 2)( 3)( 4)( 7) ( 1)( 3)( 4)( 7) 17 17,5 36 10 ( 1)( 2)( 4)( 7) ( 1)( 2)( 3)( 7) 76 210,5 36 18 ( 1)( 2)( 3)( 4) 1970 360 x x x x x x x x x x x x x x x x x x x x – – – – – – – – = + – – – – – – – – – + + – – – – – + 4 3 217 ( 16x 89x 206x+168) 36 x= – + – 4 3 217,5 ( 15x 75x 145x 84) 10 x- – + – + 4 3 295 ( 14x 63x 106x 56) 10 x+ – + – + 4 3 2421 ( 13x 53x 83x 42) 36 x- – + – + 4 3 2197 ( 10x 35x 50x 24) 36 x+ – + – + 4 3 2 2x 17x 81x 153,5x 104,5= – + – + Vậy đa thức nội suy Lagrange là: 4 3 2 4 ( ) 2x 17x 81x 153,5x 104,5P x = – + – + b/ (Hồ Thị My) x 0 2 3 5 y 1 3 2 5 3 0 0 1 1 2 2 3 3 1 2 3 0 2 3 0 1 0 1 0 2 0 3 1 0 1 2 1 3 0 1 3 0 1 2 2 3 2 0 2 1 2 3 3 0 3 1 3 2 ( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) P x y L y L y L y L x x x x x x x x x x x x y y x x x x x x x x x x x x x x x x x x x x x x x x y y x x x x x x x x x x x x = + + + – – – – – – = + – – – – – – – – – – – – + + – – – – – – ( 2)( 3)( 5) 1 30 x x x- – – = – ( 3)( 5) 3 6 x x x- – + ( 2)( 5) 2 6 x x x- – + – ( 2)( 3) 5 30 x x x- – + 3 21 ( 10x 31x 30) 30 x – = – + – 3 21 ( 8x 15x) 2 x+ – + 3 21 ( 7x 10x) 3 x- – + 3 21 ( 5x 6x) 6 x+ – + 3 213 62 0,3x 1 6 15 x x= – + + Vậy đa thức nội suy Lagrange là: 3 2 3 13 62 ( ) 0,3x 1 6 15 P x x x= – + + c/ (Hồ Thị My)
- 33. Page 34 = 4 3 21 19 47 65 1 128 96 32 24 x x x x- + – + e/ (Lê Trần Mười) x 1 2 3 4 5 y 1 2 3 2 1 Lo = (x 2)(x 3)(x 4)(x 5) ( 2)( 3)( 4)( 5) (1 2)(1 3)(1 4)(1 5) 24 x x x x- – – – – – – – = – – – – L1 = ( 1)( 3)( 4)( 5) ( 1)( 3)( 4)( 5) (2 1)(2 3)(2 4)(2 5) 6 x x x x x x x x- – – – – – – – = – – – – – L2 = ( 1)( 2)( 4)( 5) ( 1)( 2)( 4)( 5) (3 1)(3 2)(3 4)(3 5) 4 x x x x x x x x- – – – – – – – = – – – – L3 = ( 1)( 2)( 3)( 5) ( 1)( 2)( 3)( 5) (4 1)(4 2)(4 3)(4 5) 6 x x x x x x x x- – – – – – – – = – – – – – L4 = ( 1)( 2)( 3)( 4) ( 1)( 2)( 3)( 4) (5 1)(5 2)(5 3)(5 4) 24 x x x x x x x x- – – – – – – – = – – – – P4 = y0L0(x) + y1L1(x) + y2L2(x) + y3L3(x) + y4L4(x) = 4 2 43 156 108 6 x x x- + + = 4 2 43 26 18 6 6 x x x- + + Bài 3: (Lê Trần Mười) Cho bảng số liệu của hàm số y = f(x) x 11 13 14 18 19 21 y 1342 2210 2758 5850 6878 9282 a/ Tìm đa thức nội suy Newton n x y Tỉ sp cấp 1 Tỉ sp cấp 2 Tỉ sp cấp 3 Tỉ sp cấp4 Tỉ sp cấp 5 0 11 1342 434 1 13 2210 50 548 -1
- 35. Page 36 1 1 2 3 -2/3 -1 3/10 2 3 2 5/6 -11/120 3/2 -1/4 3 5 5 -1/6 1 4 6 6 Khi đó: P4(x)= 1+(x-0).1 +(x-0)(x-2).(-2/3) +(x-0)(x-2)(x-3).(3/10) + (x-0)(x-2)(x-3)(x-5).(-11/120) ( )4 3 211 73 601 413 ( ) ( ) 1 120 60 120 60 x x x x= – + – + + b/ Tính f(1,25) f(1,25)= P4(1,25) ( )4 3 211 73 601 413 (1,25) 1,25 (1,25) .1,25 1 120 60 120 60 = – + – + + =3,9311525 c/ Dùng đa thức nội suy lùi bậc 4 với 5 nút không cách đều. Ta lập được bảng tỉ sai phân đến cấp 4. n x y Tỉ SP cấp 1 Tỉ SP cấp 2 Tỉ SP cấp 3 Tỉ SP cấp 4 0 0 1
- 37. Page 38 Ta có đa thức nội suy Newton tiến xuất phát từ x0 = 1,9: P4(1,9 + 0,2t) = 11,18 + 3,6t – , ( ) ! + , ( )( ) ! – , ( )( )( ) ! Tính gần đúng f(2,0). Ta có: x = 2,0 = 1,9 + 0,2t ó t = 0,5. Vậy P4(2,0) = 11,18 + 3,6.0,5 – , . . ( . ) ! + , . , ( , )( , ) ! – , . , ( , )( , )( , ) ! Ta có đa thức nội suy Newton lùi xuất phát từ x0 = 2,7: P4(2,7 + 0,2t) = 28,56 + 5,04t – . ( ) ! – , ( )( ) ! – , ( )( )( ) ! Bài 6: (Vương Bảo Nhi) x 150 200 250 300 y = sin(x) 0,2588 19 0,342020 0,422618 0,500000 n x y Tỉ SP cấp 1 Tỉ SP cấp 2 Tỉ SP cấp 3 0 15 0,258819 0,0166402 1 20 0,342020 5,206.10-5 0,0161196 8,1733.10-7 2 25 0,422618 6,432.10-5 0,0154764 3 30 0,500000 P3(x) = 0,258819 + (x – 15). 0,0166402 + (x -15)(x – 20). 5,206.10-5 + (x -15)(x – 20)(x – 25). 8,1733.10-7 = 8,1733.10-7 x3 + 3,0202.10-6 x2 + 0,0158 x + 0,018704 P3(x) = 0,5 + (x – 30). 0,0154764 + (x -30)(x – 25). 6,432.10-5 + (x -30)(x – 25)(x – 20). 8,1733.10-7
- 39. Page 40 y 1 9 36 100 225 n x y Tỉ SP cấp 1 Tỉ SP cấp 2 Tỉ SP cấp 3 Tỉ SP cấp 4 0 1 1 8 1 2 9 9,5 27 3 2 3 36 18,5 0,25 64 4 3 4 100 30,5 125 4 5 225 Đặt n= 1+ t P4 (1 + t) = 1 + 8t + 9,5 ( 1) 2! t t – + 3 ( 1)( 2) 3! t t t- – + 0,25 ( 1)( 2)( 3) 4! t t t t- – – Sn= P4 (n) = 1+ 8(n – 1) + 9,5( 1)( 2) 2! n n- – + 3( 1)( 2)( 3) 3! n n n- – – + 0,25( 1)( 2)( 3)( 4) 4! n n n n- – – – = 1+ 8n – 8 + ( 1)( 2) 2! n n- – 3( 3) 0,25( 3)( 4) 9,5 3 12 n n n- – -é ù + +ê úë û = 8n – 7 + ( 1)( 2) 2! n n- – ( 3)( 4) 6,5 48 n n n – -é ù + +ê úë û Bài 8: (Đào Thị Hương) Dùng đa thức nội suy Newton bậc 6 với 7 nút nội suy. Ta lập được bảng các sai phân: i xi yi yD 2 yD 3 yD 4 yD 5 yD 6 yD 0 1,4 0,9523 0,0138 1 1,5 0,9661 -0,0036
- 41. Page 42 6 5 1,8 25 9 7 6 1,6 36 9,6 8 7 2,3 49 16,1 1 n i = å 28 12,2 140 256,8 Sau đó ta giải hệ: {28 8 12,2 140 28 47,3 b a b a + = + = Ta được: a = 1,14166666667 ≈ 1,14 b = 0,1095238095 ≈0,11 Vậy ta có: y = 1,14 + 0,11x b) (Phan Thị Kim Ngân) f(x) = a + bx + cx2 Ta lập bảng số liệu: i xi yi xi 2 xi 3 xi 4 xiyi xi 2 yi 1 0 1,4 0 0 0 0 0 2 1 1,3 1 1 1 1,3 1,3 3 2 1,4 4 8 16 2,8 5,6 4 3 1,1 9 27 81 3,3 9,9 5 4 1,3 16 64 256 5,2 20,8 6 5 1,8 25 125 625 9 45 7 6 1,6 36 216 1296 9,6 57,6 8 7 2,3 48 343 2401 16,1 112,7 28 12,2 140 784 4676 47,3 252,9 Ta có hệ phương trình:
- 43. Page 44 ta có bảng sau: x 0 1 2 3 4 5 6 7 ln f(x) ln(1,4) ln(1,3) ln(1,4) ln(1,1) ln(1,3) ln(1,8) ln(1,6) ln(2,3) 0,1715331416 0,06469348092 a b =ì í =î Vậy 0,1715331416 0,06469348092 ( ) x f x e + ´ = Bài 10: (Phan Thị Kim Ngân) a) Hàm thực nghiệm y=a + bx2 Ta lập bảng số tư liệu trên i xi yi xi 2 xi3 xi 4 xiyi xi 2 yi 1 1 0,1 1 1 1 0,1 0,1 2 2 3 4 8 16 6 12 3 3 8,1 9 27 81 24,3 72,9 4 4 14,9 16 64 256 59,3 238,4 5 5 23,9 25 125 625 119,5 597,5 1 n i= å 15 50 55 225 979 205,5 920,9 Ta có hệ phương trình: 3 2 979a 225 55 920,9 225a 55 15 209,5 55a 15 5 50 0,992857 1 7,142857.10 0 0,9 1 1 b c b c b c a b c y x – + + =ì ï + + =í ï + + =î = “ì ï Þ = – “í ï = – ” -î Þ = – b) 2 ( ) x c y dx x y x c d = + Û = + Đặt f(x)=yx
- 45. Page 46 Ta có bảng sau: x 2 4 6 8 10 12 y e 1510,20397 3789,5403 9897,129 26635,4949 60475,88684 171099,408 Ta lập bảng số từ bảng số liệu trên: i xi yi 2 ix 3 ix 4 ix i ix y 2 i ix y 1 2 1510,20397 4 8 16 3020,40794 6040,81588 2 4 3789,5403 16 64 256 15158,1612 60632,6448 3 6 9897,129 36 216 1296 59382,774 356296,644 4 8 26635,4949 64 512 4096 213083,9592 1704671,674 5 10 60475,88684 100 1000 10000 604758,8684 6047588,684 6 12 171099,408 144 1728 20736 2053192,896 24638314,75 1 n i=å 42 273407,7 364 3528 36400 2948597 32813545 Giải hệ phương trình: 36400d +364c = 32813545 d = 1133,3683 364d +6c = 273407,7 c = -23189,7246 Vậy ta có: y e = -23189,7246 + 1133,3683 x2 → y = ln(-23189,7246 + 1133,3683 x2 ) Bài 12: (Trần Thị Kim Ngân) ( )( ) ( ) 1 2 1 ( 1) ln( 1) 1 ln( 1) ( ) ( ) ( ) ( 1) e (1) (2) x x x x y a e b x f a e f b x y f x f x y f x a e a a f f = – + + Û – + + = Û + = = – = – = – 1 1 1 (1) e ln ln ( 1) x y f a y a x y A X B = = Û = + Û = + = Điều Kiện: ln(y) với y¹ 0 Suy ra
--- Bài cũ hơn ---