Top 7 # Xem Nhiều Nhất Chuẩn Độ Oxi Hóa Khử Bằng Phương Pháp Bicromat Mới Nhất 5/2023 # Top Like | Cuocthitainang2010.com

Chương 3. Phương Pháp Chuẩn Độ Oxy Hóa Khử

Published on

1. CHÖÔNG IV PHÖÔNG PHAÙP CHUAÅN ÑOÄ OXY HOÙA KHÖÛ

2. Phaûn öùng oxi hoùa khöû

3. Chaát khöû vaø chaát oxy hoùa  Ox + ne ⇔ Kh  Caëp ox/kh : caëp oxi hoùa khöû lieân hôïp  Ví duï :  Fe3+ + e ⇔ Fe2+  Fe3+ /Fe2+ : caëp oxi hoùa khöû lieân hôïp  MnO4 – + 5e + 8H+ ⇔ Mn2+ + 4H2O

4. Caân baèng phaûn öùng oxi hoùa khöû  2Fe3+ + Sn2+ = 2Fe2+ + Sn4+  Fe3+ + e = Fe2+  Sn2+ – 2e = Sn4+  Toång quaùt: aOx1 + bKh2 → cKh1 + dOx2  aOx1 + ne → cKh1  bKh2 – ne → dOx2

5. Theá oxy hoùa khöû-Phöông trình Nerst  Theá oxy hoùa – khöû cuûa moät caëp oxy hoaù – khöû lieân hôïp caøng cao thì chaát oxy hoùa cuûa caëp aáy caøng maïnh vaø chaát khöû caøng yeáu  Ox + ne → Kh ][ ][ lg 059,00 Kh Ox n EE +=

6. VÍ DUÏ  Vieát bieåu thöùc theá oxy hoùa – khöû cuûa caùc caëp oxy hoùa – khöû sau ôû 250 C a. Cu2+ /Cu b. MnO4 – , H+ / Mn2+ , H2O ]lg[ 2 059,0 20

7. I. Nguyeân taéc chung  aOx1 + bKh2 = cKh1 + dOx2  Phaûn öùng phaûi thoûa maõn yeâu caàu sau:  Phaûi xaûy ra hoaøn toaøn : Kc lôùn.  Phaûn öùng xaûy ra nhanh.  Khoâng xaûy ra phaûn öùng phuï.  Phaûi nhaän bieát ñöôïc ñieåm töông ñöông.

8. II / CAÙCH XAÙC ÑÒNH ÑIEÅM TÖÔNG ÑÖÔNG 1. Theâm moät chaát chæ thò coù khaû naêng taïo maøu maïnh vaø ñaëc tröng vôùi moät daïng naøo ñoù cuûa caùc caëp oxy hoùa – khöû trong phaûn öùng. 2. Khoâng caàn duøng chæ thò. 3. Duøng chaát chæ thò oxy hoùa – khöû

9. Chæ thò oxy hoùa khöû  Chaát chæ thò oxy hoùa – khöû laø nhöõng chaát höõu cô coù tính oxy hoùa hay khöû  maøu cuûa daïng oxy hoùa khaùc haún vôùi maøu cuûa daïng khöû lieân hôïp.  khi theá cuûa dung dòch thay ñoåi thì maøu saéc cuûa chæ thò cuõng thay ñoåi

11. Khoaûng theá ñoåi maøu cuûa chaát chæ thò  Khoaûng theá : ∆EInd khoaûng theá chuyeån maøu cuûa chæ thò oxy hoùa – khöû Ví duï: Ferroin : phöùc cuûa Fe2+ vôùi 1,10 phenantrolin Maøu ñoû Maøu xanh EInd 0 = 1,14 ± 0,06 (V) n EE Khox IndIndInd 059,0 / ±=∆

12. Moät soá chaát chæ thò oxy hoùa khöû Chaát chæ thò Maøu E0 ‘(Volt) taïi pH = 0IndOx IndKh Dipheùnylamin Tím Khoâng maøu 0,76 Natri Dipheùnylamin Sulfonat Ñoû tím Khoâng maøu 0,84 Acid Pheùnylanthranilic Tím ñoû Khoâng maøu 1,08 Ferroin Xanh nhaït Ñoû 1,06 Xanh Meùtylen Xanh ñaäm Khoâng maøu 0,53

13. III / ÑÖÔØNG CHUAÅN ÑOÄ TRONG PHEÙP CHUAÅN ÑOÄ QXY HOÙA -KHÖÛ aKh1 + bOx2 == aOx1 + bKh2 Kh1 − b.e = Ox1 Ox2 + a.e = Kh2 ][ ][ lg 059,0 1 10 / 11 Kh Ox b EE KhOx += ][ ][ lg 059,0 2 20 / 22 Kh Ox a EE KhOx += 00VN NV F =

14.  Tröôùc ñieåm töông ñöông Tính theá dung ñòch theo caëp Ox1/ Kh1 F F b − += 1 lg 059,0 EE 0 1 ][ ][ lg 059,0 1 10 1 0 kh oxh b EE += ][ ][ lg 059,0 1 10 1 kh oxh b b b E += VV NV oxhb + = 0 1 ][ VV NVVN khb + − = 0 00 1 ][ NVVN NV b EE − +=⇒ 00 0 1 0 lg 059,0

15. Taïi ñieåm töông ñöông Theá cuûa hai caëp Ox1/Kh1 vaø Ox2/Kh2 caân baèng neân tính theá dung dòch theo caû hai caëp ][ ][ lg 059,0 1 10 1 Kh Ox b EE += ][ ][ lg 059,0 2 20 2 Kh Ox a EE += ][ ][ lg059,0 2 20 1 Kh Ox aEaE += ][ ][ lg059,0 1 10 1 Kh Ox bEbE += b [Ox1] = a [Kh2] b [Kh1] = a [Ox2] 1 ]].[[ ]][[ 21 21 = KhKh OxOx ba aEbE 0 2 0 1 + + =TDE

16. Sau ñieåm töông ñöông Tính theá dung dòch theo caëp Ox2/Kh2 )1lg( 059,0 EE 0 2 −+= F a ][ ][ lg 059,0 2 20 2 0 kh oxh a EE += ][ ][ lg 059,0 2 20 2 kh oxh a a a E += VV VNNV oxha + − = 0 00 2 ][ VV VN kha + = 0 00 2 ][ 00 000 2 0 lg 059,0 VN VNNV a EE − +=⇒

17. VÍ DUÏ  Veõ ñöôøng chuaån ñoä khi chuaån ñoä 20 ml dung dòch Fe2+ 0,1N baèng dung dòch KMnO4 0,1N trong moâi tröôøng H2SO4 coù pH = 0 . )(77,0E0 /FeFe 23 V=++ )(51,1E0 O4H/Mn8HMnO 2 2 4 V=++ ++−

18. GIAÛI  Phaûn öùng chuaån ñoä : MnO4 – + 5Fe2+ + 8H+ = Mn2+ + 5Fe3+ + 4H2O  Ñöôïc phaân tích thaønh 2 baùn phaûn öùng : Fe2+ − 1e = Fe3+ MnO4 – + 5e + 8H+ = Mn2+ + 4H2O ][ ][ lg 1 059,0 2 3 0 / 23 + + += ++ Fe Fe EE FeFe ][ ][ lg 5 059,0 2 40 /8, 2 4 + − += ++− Mn MnO EE MnHMnO

19. V KMnO4 F Coâng thöùc tính theá E E (Volt) Ghi chuù 10 0,5 0,77 18 0,9 0,83 19,8 0,99 0,89 19.98 0,999 0,95 SS% = − 0,1% 20 1 1,39 20.02 1,001 1,48 SS% = + 0,1% 20.2 1,01 1,49 30 1,5 1,51 F F b − += 1 lg 059,0 EE 0 1 ba aEbE 0 2 0 1 + + =TDE )1lg( 059,0 EE 0 2 −+= F a )1lg( 5 059,00 /8, 2 4 −+= ++− FEE MnHMnO F F EE FeFe − += ++ 1 lg 1 059,00 / 23

20. Caùch choïn chaát chæ thi  Döïa vaøo khoaûng theá ñoåi maøu vaø böôùc nhaûy + Khoaûng theá ñoåi maøu naèm trong böôùc nhaûy ⇒Choïn chaát chæ thò naøy * Döïa vaøo theá E0 cuûa chaát chæ thò + Neáu E0 cuûa chaát chæ naèm trong böôùc nhaûy ⇒Choïn chaát chæ thò naøy + Neáu E0 ≈ ETÑ 0 : Choïn chaát chæ thò naøy

21. NHAÄN XEÙT  Tröôùc vaø sau ñieåm töông E0 cuûa dung dòch thay ñoåi chaäm.  Taïi 0,999 < F < 1,001 : E0 cuûa dung dòch taêng ñoät ngoät taïo thaønh böôùc nhaûy theá cuûa ñöôøng chuaån ñoä  Trong chuaån ñoä ñoái xöùng, böôùc nhaûy theá khoâng phuï thuoäc vaøo noàng ñoä cuûa dung dòch chuaån vaø dung dòch caàn chuaån ñoä maø phuï thuoäc vaøo ñoä cheânh leäch theá cuûa 2 caëp oxy hoaù khöû tham gia phaûn öùng chuaån ñoä.  Cheânh leäch theá giöõa 2 caëp oxy hoaù khöû caøng lôùn thì ñoä chính xaùc cuûa phöông phaùp chuaån ñoä caøng cao.  Choïn chaát chæ thò: 0,95 (V) ≤ E0 Ind≤ 1,48(V)

22. IV. SAI SOÁ CHÆ THÒ 1).100F(100 VN VNNV SS% c 00 00 −= − =

23. VÍ DUÏ  Tính sai soá khi chuaån ñoä dung dòch Fe2+ baèng dung dòch KMnO4 0,1N trong moâi tröôøng H2SO4 coù noàng ñoä ion H+ khoâng ñoåi baèng 1 mol/ lit vaø keát thuùc chuaån ñoä ôû Ec = 0,87V )(77,0E0 /FeFe 23 V=++ )(51,1E0 O4H/Mn8HMnO 2 2 4 V=++ ++−

24. GIAÛI V387,1 6 77,051,1.5 = + =TDE Ec = 0,87V < ETÑ = 1,387 V ⇒ Keát thuùc chuaån ñoä tröôùc ñieåm töông ñöông C C F F b − += 1 lg 059,0 EE 0 1 SS% = −1,96%

25. VÍ DUÏ  Tính sai soá khi chuaån ñoä dung dòch Fe2+ 0,1M baèng dung dòch Ce4+ 0,1M. Bieát raèng heát thuùc chuaån ñoä ôû Ec = 1,257 V )(77,0E0 /FeFe 23 V=++ V44,1E0 /CeCe 34 =++

27. V. CAÙC CHAÁT OXY HOÙA VAØ CHAÁT KHÖÛ HOÃ TRÔÏ  Chaát oxy hoùa vaø chaát khöû hoã trôï laø nhöõng chaát ñöôïc duøng ñeå ñieàu cheá caùc chaát oxy hoùa vaø chaát khöû khaùc nhaèm chuaån ñoä chuùng  Ví duï: Ñònh löôïng Fe trong hôïp kim. Phaân huûy maãu dung dòch maãu Fe→ 2+ vaø Fe3+ Duøng chaát khöû hoã trôï + Fe3+ vaø Fe2+ Fe→ 2+ Fe2+ + Chaát chuaån coù tính oxy hoùa

28. 1. Chaát oxy hoùa hoã trôï : Duøng ñeå oxy hoùa moät soá ion töø soá oxy hoùa thaáp oxy hoùa cao→ Fe2+ – e Fe→ 3+ 2Cr3+ – 3ex2 + 7H2O Cr→ 2O7 2- + 14H+ Mn2+ – 5e + 4H2O MnO→ 4 – + 8H+ Duøng dung dòch chuaån coù tính khöû ñeå xaùc ñònh a. NaBiO3: NaBiO3 + 4H+ + 2e BiO→ + + Na+ +2H2O E0 = 1,8 V Duøng ñeå : oxy hoùa Mn2+ MnO→ 4 – ; Cr3+ Cr→ 2O7 2- Trong moâi tröôøng acid khi ñun noùng.

29. b. (NH4)2S2O8 S2O8 2- + 2e 2SO→ 4 2- E0 = 2,01 V Duøng ñeå oxy hoùa : Ce3+ Ce→ 4+ ; Mn2+ MnO→ 4 – (Ag+ xuùc taùc); Cr3+ Cr→ 2O7 2- Loaïi S2O8 2- dö : ñun soâi dung dòch moät thôøi gian ngaén 2S2O8 2- + 2 H2O = 4SO4 2- + O2↑ + 4H+ c. H2O2 H2O2 + 2H+ + 2e 2H→ 2O E0 = 1,78 V Trong moâi tröôøng acid : hoøa tan caùc kim loaïi trong HCl-H2O2 Trong moâi tröôøng baz: Mn2+ MnO→ 2; Cr3+ CrO→ 4 2- Loaïi H2O2 dö: ñun soâi dung dòch

30. 2. Chaát khöû hoã trôï – Caùc loaïi coät khöû a. Coät khöû Jones Hoãn hoáng Zn(Hg) E0 = -0,760 V Cr3+ + e → Cr2+ (xanh laù maï) Fe3+ + e → Fe2+ (gaàn nhö khoâng maøu ) TiO2+ +2H+ + e → Ti3+ + H2O (Maøu tím ) VO2 + + 4H+ +3e → V2+ + H2O

31. b. Coät khöû Walden Chaát khöû naïp leân oáng: Ag trong moâi tröôøng HCl Caùc chaát oxy hoùa bò khöû : Cu2+ + 2e → Cu+ Fe3+ + e → Fe2+ (gaàn nhö khoâng maøu) H2MoO4 + 2H+ + e → MoO2 + + 2H2O UO2 2+ + 4H+ + 2e → U4+ + 2H2O VO2 2+ + 2H+ + e → VO2+ + H2O

32. VI. CAÙC PHÖÔNG PHAÙP CHUAÅN ÑOÄ OXY HOAÙ − KHÖÛ 1. Phöông phaùp chuaån ñoä oxy hoaù − khöû baèng KMnO4 2. Phöông phaùp chuaån ñoä baèng Ce(SO4)2 3. Phöông phaùp chuaån ñoä oxy hoaù khöû baèng K2Cr2O7 4. Phöông phaùp chuaån ñoä oxy hoùa khöû theo phöông phaùp Ioát – Thiosulfat

33. 1.Phöông phaùp chuaån ñoä oxy hoaù − khöû baèng KMnO4  Nguyeân taéc MnO4 – + 8H+ + 5e → Mn2+ + 4H2O E0 = 1,51V 4KMnO4 + 2H2O → 4MnO2 + 3O2 + 4KOH Khoâng duøng HNO3 vaø HCl laøm moâi tröôøng 2MnO4 – + 10Cl- + 16H+ → 2Mn2+ + 5Cl2 + 8H2O

34. * Chuù yù: Trong dung dòch loaõng phaûn öùng giöõa KMnO4 vaø Cl- xaûy ra chaäm. Khi coù maët Fe2+ phaûn öùng xaûy ra theá naøo? Phaûn öùng xaûy ra nhanh vaø giaûi phoùng Cl2 Cô cheá phaûn öùng: MnO4 – + Fe2+ → Mn2+ + Fe5+ Fe5+ + Cl- → Fe3+ + Cl2(b) Fe5+ + Mn2+ → Fe3+ + Mn3+ (c) Mn3+ + Fe2+ → Mn2+ + Fe3+

35. Ñeå ngaên ngöøa aûnh höôûng cuûa Cl- trong chuaån ñoä KMnO4 Theâm hoãn hôïp baûo veä Zimmermann vaøo moãi laàn chuaån ñoä hoãn hôïp baûo veä Zimmermann: – MnSO4 : Ñeå phaûn öùng (c) chieám öu theá hôn (b) – H3PO4 : taïo phöùc FeH2PO4 2+ giuùp quan saùt ñieåm cuoái chuaån ñoä deã daøng – H2SO4 : laøm moâi tröôøng ñeå MnO4 – → Mn2+

36. A Redox TitrationDeep-purple MnO4 – is the titrant … … and Fe2+ is being titrated. During titration, Mn2+ and Fe3+ (nearly colorless) are produced. After the Fe2+ has been consumed, the next drop of MnO4 – imparts a pink color.

37. ÖÙng duïng cuûa phöông phaùp chuaån ñoä oxy hoaù − khöû baèng KMnO4  Chuaån ñoä tröïc tieáp caùc chaát khöû Xaùc ñònh H2C2O4 5H2C2O4 + 2KMnO4 + 8H2SO4 = 2MnSO4 + 10CO2 + K2SO4 + 8H2O Xaùc ñònh Fe2+ Fe2+ + MnO4 – + 8H+ = 5Fe3+ + Mn2+ + 4H2O Xaùc ñònh H2O2 5H2O2 + 2MnO4 – + 6H+ = 2Mn2+ + 5O2 + 8H2O

38. ÖÙng duïng cuûa phöông phaùp chuaån ñoä oxy hoaù − khöû baèng KMnO4  Chuaån ñoä thay theá Aùp duïng ñoái vôùi : Chaát khöû deã bò khoâng khí oxy hoùa Chaát khöû + Fe3+ → Fe2+ Chuaån ñoä Fe2+ baèng KMnO4 + Xaùc ñònh RCHO RCHO + 2Cu(OH)2→RCOOH + Cu2O + 2H2O Cu2O + Fe3+ = Cu2+ + Fe2+ 5Fe2+ + MnO4 – + 8H+ = 5Fe3+ + Mn2+ + 4H2O

39. ÖÙng duïng cuûa phöông phaùp chuaån ñoä oxy hoaù − khöû baèng KMnO4  Chuaån ñoä thay theá + Xaùc ñònh caùc ion taïo ñöôïc tuûa oxalat Ca2+ ,Cd2+ , Zn2+ , Pb2+ , Co2+ , Ni2+ , … – Duøng (NH4)2C2O4 ñeå keát tuûa caùc ion kim loaïi treân Ca2+ + C2O4 2- = CaC2O4↓ – Loïc röûa tuûa oxalat thu ñöôïc baèng H2SO4 loaõng CaC2O4 + H2SO4 = CaSO4↓ + H2C2O4 – Chuaån H2C2O4 sinh ra baèng KMnO4 5H2C2O4 + 2KMnO4 + 8H2SO4 = 2MnSO4 + 10CO2 + K2SO4 + 8H2O

40. ÖÙng duïng cuûa phöông phaùp chuaån ñoä oxy hoaù − khöû baèng KMnO4  Chuaån ñoä ngöôïc Aùp duïng ñoái vôùi:Chaát khöû phaûn öùng chaäm vôùi MnO4 – Chaát khöû + MnO4 – dö Chuaån ñoä KMnO4dö baèng chaát khöû khaùc + Xaùc ñònh S2- Cho S2- taùc duïng vôùi KMnO4 laáy dö 5S2- +8MnO4 – dö+ 24H+ = 5SO4 2- + 8Mn2+ + 12H2O Chuaån löôïng KMnO4 dö baèng Fe2+ 5Fe2+ + MnO4 – + 8H+ = 5Fe3+ + Mn2+ + 4H2O

41. 2. Phöông phaùp chuaån ñoä Ce(SO4)2  Ce4+ + e → Ce3+ Maøu cam Pheùp chuaån ñoä Ce4+ phaûi duøng chaát chæ thò Thöôøng duøng chæ thò Feroin. Taïi ñieåm töông ñöông: maøu xanh nhaït → maøu ñoû.

42. ÖÙng duïng cuûa phöông phaùp chuaån ñoä Ce(SO4)2 Chaát PT Phaûn öùng Ñieàu kieän TH Sn Sn2+ + 2Ce4+ = Sn4+ + 2Ce3+ Khöû Sn4+ baèng Zn Fe Fe2+ + Ce4+ = Fe3+ + Ce3+ Khöû Fe3+ baèng Zn hoaëc coät Walden, SnCl2 Mg, Ca, Zn, Co, Pb, Ag H2C2O4+2Ce4+ =2CO2+2Ce3+ +2H+ Keát tuûa caùc ion döôùi daïng MC2O4. Loïc, röûa keát tuûa, hoøa tan baèng H2SO4 loaõng HNO2 HNO2+2Ce4+ +H2O=NO3 – + 2Ce3+ +3H+

43. 3. Phöông phaùp chuaån ñoä oxy hoùa khöû baèng K2Cr2O7  Cr2O7 2- + 14H+ + 6e→2Cr3+ + 7H2O maøu ñoû cam E0 = 1,33V Ñeå nhaän bieát ñieåm töông ñöông: Chæ thò Diphenylamin Ñieåm cuoái : maøu xanh laù caây→ xanh tím ñaäm Coù theå duøng HCl laøm moâi tröôøng

44. ÖÙng duïng cuûa phöông phaùp chuaån ñoä oxy hoùa khöû baèng K2Cr2O7  Xaùc ñònh nhu caàu oxy hoùa hoïc COD COD = chemical oxygen demand Chæ soá COD ñaëc tröng cho haøm löôïng chaát höõu cô cuûa nöôùc thaûi vaø söï oâ nhieãm cuûa nöôùc töï nhieân. COD laø löôïng oxy caàn thieát cho quaù trình oxy hoùa hoùa hoïc caùc hôïp chaát höõu cô trong nöôùc thaønh CO2 vaø nöôùc. Chæ soá COD caøng lôùn nöôùc caøng oâ nhieãm.

45. ÖÙng duïng cuûa phöông phaùp chuaån ñoä oxy hoùa khöû baèng K2Cr2O7  Nguyeân taéc: Chaát höõu cô +Cr2O7 2- +H+ CO2+H2O+Cr3+ Chuaån ñoä löôïng Cr2O7 2- baèng Fe2+ Cr2O7 2- + 6Fe2+ + 14H+ = 2Cr3+ + 6Fe3+ + 7H2O Tính toaùn keát quaû a: soá ml Fe2+ duøng chuaån ñoä maãu traéng. b: soá ml Fe2+ duøng ñeå chuaån ñoä maãu caàn phaân tích N: noàng ñoä ñöông löôïng cuûa Fe2+ 8 : ñöông löôïng cuûa Oxy V: theå tích cuûa maãu ñem phaân tích (ml) 1000 8.).( )/( V Nba lmgCOD − =

46. 4. Phöông phaùp chuaån ñoä I2- Na2S2O3  Nguyeân taéc  I2 + 2e → 2I- E0 = 0,54 V  Chuaån I2 + Na2S2O3 I2 + 2Na2S2O3 = 2NaI + Na2S4O6 Chaát chæ thò : Hoà tinh boät Ñieåm cuoái : maøu xanh tím → khoâng maøu

47. * Chuù yù: Khi chuaån ñoä I2 baèng Na2S2O3 neân: + Tieán haønh ôû nhieät ñoä thöôøng Vì : ôû T0 cao I2 bò thaêng hoa vaø ñoä nhaïy cuûa hoà tinh boät bò giaûm ñi + Chuaån ñoä trong moâi tröôøng acid yeáu hoaëc trung tính pH < 5 Vì: Trong moâi tröôøng acid maïnh S2O3 2- + 2H+ H→ 2SO3 + S Trong moâi tröôøng kieàm I2 + 2OH- IO→ – + I- + H2O + Chæ cho hoà tinh boät vaøo ôû gaàn cuoái chuaån ñoä

48. ÖÙng duïng cuûa phöông phaùp chuaån ñoä I2- Na2S2O3  Chuaån ñoä ngöôïc Chaát Khöû + I2 dö Chuaån I2 dö baèng Na2S2O3 I2 + 2Na2S2O3 = 2NaI + Na2S4O6

49. ÖÙng duïng cuûa phöông phaùp chuaån ñoä I2- Na2S2O3 * Chuaån ñoä thay theá Chaát oxy hoùa + KI dö I→ 2 Chuaån I2 taïo ra baèng Na2S2O3 + Xaùc ñònh Cu2+ : tieán haønh pH = 4 (CH3COOH) 2Cu2+ + 4I- = 2CuI↓ + I2 I2 + 2Na2S2O3 = 2NaI + Na2S4O6 Chuù yù: ñeå traùnh söï haáp phuï I2 treân tuûa CuI laøm tuûa coù maøu vaøng thaåm khoâng xaùc ñònh ñöôïc ñieåm cuoái.

50. Example 4.12 A 0.2865-g sample of an iron ore is dissolved in acid, and the iron is converted entirely to Fe2+ (aq). To titrate the resulting solution, 0.02645 L of 0.02250 M KMnO4(aq) is required. What is the mass percent of iron in the ore?

51. Ví duï  Chuaån ñoä I2 baèng Na2S2O3  Chæ thò : Hoà tinh boät  I2 + 2Na2S2O3 = 2NaI + Na2S4O6 Dung dòch ban ñaàu : Phöùc maøu xanh tím ñaäm Ñieåm cuoái : maát maøu xanh tím dung dòch trong suoát

52. Ví duï  Chuaån ñoä Fe2+ baèng KMnO4  5Fe2+ + MnO4 – + 8H+ = 5Fe3+ + Mn2+ +4H2O  Dung dòch ban ñaàu : Khoâng maøu  Ñieåm cuoái: dö 1 gioït KMnO4 Dung dòch coù maøu tím nhaït

Định Lượng Đường Khử, Đường Tổng Bằng Phương Pháp Chuẩn Độ Oxy Hóa Khử Với Ferrycyanure

TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 1 BÀI 1: ĐỊNH LƯỢNG ĐƯỜNG KHỬ, ĐƯỜNG TỔNG BẰNG PHƯƠNG PHÁP CHUẨN ĐỘ OXY HÓA KHỬ VỚI FERRYCYANURE I. Nguyên tắc: Khi cho ferrycyanure K3Fe(CN)6 phản ứng với đường khử, sản phẩm thu được là ferrocyanure. Dựa vào phản ứng này, ta có thể suy ra lượng đường khử có mặt trong dung dịch cần xác định. Việc chuẩn độ được tiến hành trong môi trường kiềm NaOH, khi đun nóng với chỉ thị xanh metylen (methylen blue). Phương trình phản ứng: CH2OH-(CHOH)4-CHO + K3Fe(CN)6 + 2NaOH CH2OH-(CHOH)4-COONa + NaK3Fe(CN)6 + H2O Phương pháp này đơn giản hơn phương pháp dùng dung dịch kiềm của sulfat đồng do không tạo tủa và phản ứng kết thúc rõ ràng. Kết quả tính toán không dựa vào phương trình lý thuyết, mà dùng công thức thực nghiệm. Độ chính xác của kết quả phụ thuộc nhiều yếu tố, nhưng trình tự tiến hành và thao tác là quan trọng nhất. Tất cả monosacarit và một số oligosacarit là đường khử. Các oligosacarit và polysacarit dễ bị thủy phân thành monosacarit vì vậy có TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 2 thể định lượng được đường khử trước và sau thủy phân để tính hàm lượng của chúng. II. Hoá chất-dụng cụ: 1. Dụng cụ: Bếp điện, kẹp, lưới amiang, nồi cách thủy Phễu, ống đong, bình định mức, becher, erlen, burette, pipette 2. Hóa chất: K3Fe(CN)6 1% Đường glucoza 0,5% (w/v) NaOH 5%; 2,5N HCl 5% CCl3COOH 10% Methyl red 1% Methylen blue 0,04% III. Tiến hành: 1. Xử lý nguyên liệu: Nguyên liệu không chứa nhiều tinh bột hoặc inulin Dùng nước nóng trích ly đường. Cân 1-2g mẫu nếu là nguyên liệu khô (cây, lá hoặc quả khô) hoặc 5 – 10g nếu là nguyên liệu tươi có hàm ẩm cao (rau, quả tươi). Cho vào cối sứ nghiền thật nhỏ với bột thủy tinh hay cát sạch và 30mL nước cất nóng 70 – 80oC. Trích ly nhiều lần bằng nước nóng. Chuyển lượng dịch vào bình định mức, bỏ phần bã đã trích hết đường. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 3 Nguyên liệu giàu protein (mô động vật, đậu) Kết tủa protein và các tạp chất bằng dung dịch acid tricloacetic 10%, sau đó trung hòa bằng dung dịch NaOH 5% với chỉ thị methyl red (màu đỏ chuyển sang vàng). Thêm nước cất tới vạch định mức, lọc qua giấy lọc vào cốc hay bình khô. Nước qua lọc là dung dịch định lượng đường khử. Nguyên liệu chứa nhiều tinh bột hay inulin (khoai lang, sắn, khoai tây) Trích ly đường bằng rượu 70 – 80o. Đun cách thủy hỗn hợp trong bình có lắp ống sinh hàn không khí. Trong trường hợp này không cần kết tủa protein vì lượng protein chuyển vào dung dịch không đáng kể. Nguyên liệu chứa nhiều acid hữu cơ (cà chua, dứa, chanh, khế,) Trong quá trình trích ly đường, sacaroza có thể bị thủy phân một phần do sự có mặt của acid hữu cơ có sẵn trong nguyên liệu, do đó khi cần xác định riêng đường khử và đường sacaroza, phải trung hòa acid hữu cơ bằng dung dịch NaOH 5% hay Na2CO3 bão hòa. Cân chính xác khoảng 10g nguyên liệu, nghiền nhuyễn nguyên liệu trong cối sứ với một ít nước cất. Nhỏ 3 giọt chỉ thị metyl đỏ (methyl red) và cho từ từ từng giọt NaOH 5% vào đến khi xuất hiện màu hồng nhạt. Sau đó cho hỗn hợp vào bình định mức 100ml để trích ly, lắc đều trong 10 phút, định mức tới vạch và đem lọc. 2. Định lượng đường khử: – Sau khi lọc, lấy dung dịch mẫu chứa đường khử , cho vào burette. – Cho vào bình nón 10ml dung dịch K3Fe(CN)6 1% và 2,5mL dung dịch NaOH 2,5N. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 4 – Đun sôi và chuẩn độ ngay trên bếp bằng dung dịch đường khử từ burette, cho từng giọt một, lắc mạnh. – Dung dịch ban đầu có màu vàng chanh của ferrycyanure. Điểm dừng chuẩn độ xác định khi màu vàng chanh biến mất, dung dịch trong suốt không màu trong khoảng 30 giây rồi chuyển sang màu vàng rơm rất nhạt của ferrocyanure. Trong trường hợp khó nhận điểm chuyển màu, có thể kiểm tra điểm kết thúc bằng cách nhỏ một giọt chỉ thị methylen blue và một giọt đường thừa đầu tiên sẽ làm mất màu xanh cho biết phản ứng đã kết thúc. – Kết quả lần chuẩn độ đầu tiên chỉ có giá trị tham khảo cho lần chuẩn độ thứ hai. Lần này, sau khi đun sôi dung dịch ferrycyanure, xả nhanh lượng đường (theo kết quả lần chuẩn độ trước), chỉ để lại khoảng dưới 1mL để chuẩn độ tiếp tìm chính xác điểm cuối. – Kết quả tính toán chỉ sử dụng từ lần chuẩn độ thứ hai trở đi. – Lặp lại thí nghiệm chuẩn độ 3 lần. – Tính kết quả: Trong thí nghiệm, Vk mL dung dịch mẫu và Vg mL dung dịch glucose 0,5% cùng phản ứng với một dung dịch ferrycyanure ở một nồng độ xác định. Như vậy, Vk mL dung dịch mẫu tương ứng với Vg mL dung dịch glucose 0,5% có (0,5 x Vg) / 100 g glucose. Lượng đường khử được tính bằng công thức: mVk VVgXk ×× ××× = 100 1005,0 Trong đó: TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 5 Xk – lượng đường khử, g/100g hay g/100mL Vg – thể tích dung dịch glucose 0,5% cho chuẩn độ, mL Vk – thể tích dung dịch đường khử cho chuẩn độ, mL V – thể tích bình định mức, mL m – lượng mẫu thí nghiệm, g hoặc mL 3. Định lượng đường tổng: Đường tổng bao gồm các gluxit hòa tan trích ly được trong nước. Cân chính xác khoảng 10g nguyên liệu, nghiền nhuyễn nguyên liệu trong cối sứ với một ít nước cất. Nhỏ 3 giọt chỉ thị metyl đỏ (methyl red) và cho từ từ từng giọt NaOH 5% vào đến khi xuất hiện màu hồng nhạt. Sau đó cho hỗn hợp vào bình định mức 100ml để trích ly, lắc đều trong 10 phút, định mức tới vạch và đem lọc. Lấy chính xác 50 mL dung dịch mẫu cho vào bình tam giác 250mL . Thêm 20mL dung dịch HCl 5%, và đem đun cách thủy hỗn hợp trong 30 – 45 phút. Sau đó, làm nguội nhanh và trung hòa hỗn hợp bằng dung dịch NaOH 2,5N hoặc dung dịch Na2CO3 bão hòa với chỉ thị methyl red (dung dịch từ màu đỏ chuyển sang vàng). Sau đó, cho vào bình định mức 250mL và định mức tới vạch. Tiến hành chuẩn độ tương tự như định lượng đường khử. Hàm lượng đường tổng được tính bằng công thức: mVt VVVgXt ××× ×××× = 50100 1005,0 21 Trong đó: Xt – hàm lượng đường tổng, % Vg – thể tích dung dịch glucoza 0,5% cho chuẩn độ, mL TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 6 Vt – thể tích dung dịch đường tổng cho chuẩn độ, mL V1 – thể tích bình định mức của dung dịch xác định đường khử, mL V2 – thể tích bình định mức của dung dịch xác định đường tổng, mL m – lượng mẫu cân thí nghiệm, g hoặc mL 4. Định lượng glucose chuẩn 0,5%: tiến hành thí nghiệm tương tự đối với dung dịch đường chuẩn là dung dịch glucose 0,5%. Thay lượng đường khử trên burette bằng dung dịch glucose chuẩn 0,5% và chuẩn độ tương tự như định lượng đường khử. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 7 BÀI 2: ĐỊNH LƯỢNG NITƠ TỔNG BẰNG PHƯƠNG PHÁP MICRO-KJELDAHL Phương pháp Micro – Kjeldahl thường được dùng để xác định tổng lượng Nitơ trong các phẩm vật có nguồn gốc vi sinh vật. I. Nguyên tắc: Khi đốt nóng phẩm vật đem phân tích với H2SO4 đậm đặc, các hợp chất hữu cơ bị oxy hóa. Carbon và Hydro tạo thành CO2 và H2O. Còn Nitơ sau khi được giải phóng ra dưới dạng NH3 kết hợp với H2SO4 tạo thành (NH4)2SO4 tan trong dung dịch. Đuổi NH3 khỏi dung dịch bằng NaOH đồng thời cất và thu NH3 bằng một lượng dư H2SO4 0,1N. định phân lượng H2SO4 0,1N còn lại bằng dung dịch NaOH 0,1N chuẩn, qua đó tính được lượng Nitơ có trong mẫu nguyên liệu thí nghiệm. II. Dụng cụ thiết bị: Máy cất đạm bán tự động GERHARDT, Tủ Hotte Bình Kjeldahl 50mL Ống đong 25mL Pipette 2mL; 10mL Erlen 500mL Bình định mức 100mL Burette 25mL TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 8 Becher 100mL; 250mL III. Hóa chất: H2SO4 đặc, NaOH 40%, HClO4 tinh khiết Dung dịch NaOH 0,1N dung dịch chuẩn H2SO4 0,1N Phenolphtalein 1% IV. Cách tiến hành: 1. Vô cơ hóa mẫu: Tiến hành trong tủ Hotte. Lấy mẫu cho vào bình Kjeldahl. Tùy loại nguyên liệu nhiều hay ít chất đạm, mẫu rắn cân 0,2 đến 0,5g mẫu lỏng lấy từ 2 đến 5mL (nước mắm lấy 2 mL, sữa lấy 5mL). Thêm vào từ từ 10 mL H2SO4 đậm đặc (tỉ trọng 1,84). Để tăng nhanh quá trình vô cơ hóa (đốt cháy) cần phải cho thêm chất xúc tác. Tốt nhất là dùng 0,5 g hỗn hợp K2SO4 : CuSO4 : Se (100:10:1). Có thể dùng Se kim loại (0,05g) hoặc dùng hỗn hợp CuSO4 : K2SO4 (1:3). Hỗn hợp xúc tác có tác dụng tăng nhiệt độ sôi, làm tăng vận tốc quá trình phản ứng. Có thể dùng xúc tác là axit Perchloric HClO4, giải phóng O2 cho phản ứng Oxyhóa. Sau khi thêm các chất xúc tác, đun nhẹ hỗn hợp tránh sôi trào, và chỉ đun mạnh khi hỗn hợp đã hoàn toàn chuyển sang dịch lỏng. Trong quá trình đun thỉnh thoảng lắc nhẹ, tráng khéo léo sao cho không còn một vết đen nào của mẫu nguyên liệu thí nghiệm chưa bị phân hủy sót lại trên thành bình. Đun cho tới khi dung dịch trong bình hoàn toàn trắng. 2. Cất đạm: Tiến hành trong máy cất đạm bán tự động GERHARDT của Đức. Chuẩn bị máy cất đạm: cắm điện, bật máy, màn hình sẽ hiện lên “H”, chờ cho đến khi màn hình hiện lên “P”, máy đã sẵn sàng làm việc. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 9 Chuyển toàn bộ dung dịch mẫu sau khi đã vô cơ hóa xong ở bình Kjeldahl vào bình định mức 100mL (chú ý: lúc này trong bình Kjeldahl còn dư 1 lượng H2SO4 đậm đặc trong dung dịch mẫu của quá trình vô cơ hóa nên phải cho trước 1 ít nước cất vào bình định mức trước khi đổ dung dịch mẫu vào), thêm nước cất cho đến vạch định mức. Lúc này nhiệt tỏa ra rất mạnh làm nước bay hơi một phần. Làm nguội bình định mức và điều chỉnh lại mức nước để tránh sai số, sau đó đổ ra erlen để dễ lắc trộn dung dịch mẫu đồng đều. – Lấy 10mL dung dịch H2SO4 0.1N cho vào erlen 250ml, lắp vào máy. Chú ý nhúng ngập ống vào dịch lỏng. – Lấy vào ống phản ứng 10 mL dung dịch thí nghiệm từ bình định mức. Lắp vào hệ thống, chú ý không lắp lệch, khí sẽ thoát ra ngoài, mất mẫu. – Khi hết thời gian cất đạm, lấy erlen ra đem chuẩn độ để xác định lượng H2SO4 01.N thừa. 3. Định phân (chuẩn độ): Lấy erlen ra khỏi máy sau khi đã tráng nước cất để lấy hết mẫu bám trên ống. Cho vào 10 giọt chỉ thị Phenolphtalein, và định phân bằng dung dịch NaOH 0,1N. 4. Xác định hệ số hiệu chỉnh K: K là tỷ số giữa nồng độ thực tế và nồng độ tính toán của NaOH. Lấy vào erlen 10 mL H2SO4 0,1N chuẩn, thêm vài giọt chỉ thị phenolphtalein 1% và định phân bằng NaOH 0,1N. Tính nồng độ thực tế của NaOH đem định phân. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 10 5. Tính kết quả: Hàm lượng phần trăm Nitơ tổng có trong mẫu được tính theo công thức sau: Trong đó: N – hàm lượng Nitơ tính bằng phần trăm khối lượng a – số mL dung dịch chuẩn H2SO4 0,1N đem hấp thụ NH3 b – số mL NaOH 0,1N tiêu tốn cho chuẩn độ m – khối lượng mẫu đem vô cơ hóa, g. V- tổng thể tích định mức dung dịch vô cơ hóa (100mL) v- thể tích dung dịch vô cơ hóa dùng chưng cất (10mL) 0,0014 – lượng gam Nitơ ứng với 1mL H2SO4 0,1N K – Hệ số điều chỉnh nồng độ NaOH 0,1N mv VbKaN × ×××− = 1000014,0)( TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 11 BÀI 3 : PHẦN I: ĐỊNH LƯỢNG LIPIT TỔNG THEO PHƯƠNG PHÁP SOXHLET I. Nguyên tắc: Dùng dung môi kỵ nước trích ly hoàn toàn lipit từ nguyên liệu đã được nghiền nhỏ. Một số thành phần hòa tan trong chất béo cũng được trích ly theo bao gồm sắc tố, các vitamin tan trong chất béo, các chất mùi tuy nhiên hàm lượng của chúng thấp. Do có lẫn tạp chất, phần trích ly được gọi là lipit tổng hay dầu thô. Hàm lượng lipit tổng có thể tính bằng cách cân trực tiếp lượng dầu sau khi chưng cất loại sạch dung môi hoặc tính gián tiếp từ khối lượng bã còn lại. Ưu điểm của cách tính gián tiếp là có thể đồng thời trích ly nhiều mẫu trong cùng một trụ chiết. II. Dụng cụ thiết bị: Bộ Soxhlet (bình cầu, trụ chiết, ống sinh hàn), Tủ sấy 105oC, cân phân tích Cối chày sứ, bình hút ẩm, giấy lọc gấp thành túi đựng nguyên liệu. Một bóng đèn 100w làm nguồn nhiệt III. Hoá chất: Dung môi trích ly lipit: diethyl ether hoặc ether petrol. Dung môi ether phải không chứa peroxyt, nước, rượu và có độ sôi khoảng 40 – 50oC. Xử lý ether như sau: Ether: 500mL TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 12 Dung dịch NaOH hay KOH 40%: 5mL Dung dịch KMnO4 4%:50mL Để trong 24 giờ, thỉnh thoảng lắc đều, sau đó rửa 4 – 5 lần nước cất, loại bỏ nước bằng phễu chiết, cho thêm 50g Na2SO4 khan và để trong 24 giờ, chưng cất ether, bảo quản trong chai thủy tinh màu. IV. Tiến hành trích ly lipit: Sấy khô nguyên liệu đến khối lượng không đổi. Cân chính xác 5g nguyên liệu đã được nghiền nhỏ, cho vào bao giấy đã được sấy khô và biết khối lượng. Chú ý gói mẫu phải có bề rộng nhỏ hơn đường kính ống trụ và chiều dài ngắn hơn chiều cao ống chảy tràn. Dùng bút chì viết lên bao giấy khối lượng bì và mẫu. Đặt bao giấy vào trụ chiết. Lắp trụ chiết vào bình cầu và gắn ống sinh hàn. Qua đầu ống sinh hàn, dùng phễu cho dung môi vào trụ chiết sao cho một lượng dung môi đã chảy xuống bình cầu và một lượng trên phễu chiết còn đủ ngập mẫu. Dùng bông làm nút đầu ống sinh hàn. Mở nước lạnh vào ống sinh hàn. Mở công tắc đèn và bắt đầu trích lipit. Điều chỉnh nhiệt độ trích sao cho chu kỳ hoàn lưu của dung môi đạt từ 5 đến 8 lần trong một giờ. Chiết trong 8 ÷12h cho đến khi trích ly hoàn toàn hết chất béo. Thử bằng cách lấy vài giọt ether ở cuối ống xiphông nhỏ lên tấm kính hoặc gạch men, dung môi bay hơi không để lại vết dầu loang thì kết thúc. Cho ether chảy xuống hết bình cầu. Lấy bao giấy ra, đặt dưới tủ hotte cho bay hơi hết ether ở nhiệt độ thường rồi cho vào tủ sấy, sấy ở 100 ÷1050C trong 1,5h. Để nguội trong bình hút ẩm, cân xác định khối lượng. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 13 Hình : Bộ Soxhlet V. Tính kết quả: Hàm lượng phần trăm chất béo tính theo công thức: X = (M1 – M2)x 100/ m Trong đó: M1: khối lượng bao giấy và mẫu ban đầu, g M2: khối lượng bao giấy và mẫu sau khi trích lipit và sấy khô, g m: khối lượng mẫu ban đầu, g TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 14 PHẦN II: XÁC ĐỊNH CÁC CHỈ SỐ CỦA CHẤT BÉO I. Xác định chỉ số axit: 1. Phạm vi áp dụng: Phương pháp này áp dụng cho dầu mỡ động, thực vật, không áp dụng cho các loại sáp. 2. Định nghĩa: Chỉ số axit (Av) được tính bằng số mg KOH cần để trung hòa hết lượng axit béo tự do có trong 1 gam chất béo. Chỉ số axit dự báo về khả năng bảo quản sản phẩm và cho biết mức độ bị thuỷ phân của chất béo. 3. Nguyên tắc: Trung hòa lượng axit béo tự do có trong chất béo bằng dung dịch KOH, phản ứng xảy ra: RCOOH + KOH RCOOK + H2O 4. Dụng cụ: Burrette10mL hoặc 25mL, có khoảng chia độ 0,05mL, erlen 100mL nút nhám, becher 100mL, ống đong 25mL 5. Hóa chất: Diethyl ether, rượu ethylic 960 Dung dịch KOH 0,1N hoặc KOH 0,05N trong rượu, đã được chuẩn bị trước ít nhất là một ngày và được gạn vào chai nâu đậy kín. Dung dịch phải không màu hay có màu vàng nhạt. Phenolphtalein (hoặc thymolphtalein) 1% trong rượu. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 15 6. Cách tiến hành: Lấy vào erlen sạch khô chính xác khoảng 5g chất béo. Thêm 20mL hỗn hợp ether ethylic-rượu ethylic (1:1) để hòa tan chất béo. Đối với mẫu rắn, khó tan có thể gia nhiệt nhẹ trên nồi cách thủy, lắc đều. Chuẩn độ hỗn hợp bằng dung dịch KOH 0,05N trong rượu với 5 giọt chỉ thị phenolphtalein 1% cho đến khi dung dịch có màu hồng bền trong 30 giây. Trường hợp chất béo có màu thẫm thì dùng chỉ thị thymolphtalein (1mL), kết thúc chuẩn độ khi xuất hiện màu xanh. 7. Tính kết quả: Chỉ số Axit tính theo công thức: V – thể tích dung dịch KOH dùng định phân, mL T – hệ số hiệu chỉnh nồng độ của dung dịch KOH sử dụng, T = 1 nếu pha từ ống chuẩn. m – lượng mẫu thí nghiệm, g 2,8055 – số mg KOH có trong 1mL KOH 0,05N II. Xác định chỉ số peroxyt: (Theo TCVN 6021: 1996 ISO 3960: 1977 ) 1. Định nghĩa: Chỉ số Peroxyt (PoV) là số mili-đương lượng của oxy hoạt hóa có trong 1 kilogram mẫu thử. Chỉ số Peroxyt biểu thị cho mức độ bị oxy hóa của chất béo. m TVAV ××= 8055,2 TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 16 2. Nguyên tắc: Các peroxyt tạo thành trong quá trình ôi hóa của chất béo, trong môi trường axit có khả năng phản ứng với KI giải phóng Iod theo phản ứng: R1-CH-CH-R2 + 2KI + 2CH3COOH R1-CH-CH-R2 + 2CH3COOK + H2O + I2 O O O Định phân Iod tạo thành bằng dung dịch thiosulfate natri: 2Na2S2O3 + I2 2NaI + Na2S4O6 Chỉ số peroxyt được tính bằng số mili- đương lượng natri thiosulfate kết hợp hết với1ượng Iod được giải phóng. 3. Dụng cụ: Cân phân tích, burrette 10mL hay 25mL, chia vạch 0,1mL, erlen nút nhám 100mL, ống đong 50mL, pipette 1mL 4. Hóa chất: Cloroform (P). Axit Axetic băng (P). Dung dịch hồ tinh bột 0,1% Dung dịch Na2S2O3 0,01N hay 0,002N, được pha từ ống chuẩn. Dung dịch KI bão hòa, được pha mới và làm sạch khỏi Iodat và I2 tự do. Để kiểm tra dung dịch KI bão hòa, thêm hai giọt hồ tinh bột vào 0,5mL dung dịch KI trong 30mL dung dịch CH3COOH:CHCl3 theo tỷ lệ 3: 2, nếu có màu xanh mà phải thêm hơn một giọt Na2 S2O3 0,01N thì bỏ dung dịch KI này và chuẩn bị dung dịch mới. 5. Tiến hành: Cân vào erlen có nút nhám chính xác khoảng 3 – 5 g chất béo. Hòa tan mẫu thử bằng 10mL chloroform (CHCl3), thêm 15mL axit axetic hoặc TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 17 cho vào 15 – 30 mL hỗn hợp chloroform – axit axetic băng (tỷ lệ 1: 2). Thêm 1mL dung dịch KI bão hòa. Đậy kín erlen ngay. Lắc trong một phút và để yên chính xác 5 phút ở nơi tối TO= 15 – 25OC (theo ISO) hoặc lắc và để yên bình vào chỗ tối 1 phút (theo AOCS). Thêm 30mL nước cất, lắc mạnh, thêm 5 giọt hồ tinh bột 1% làm chất chỉ thị. Chuẩn độ Iod tạo thành bằng dung dịch Na2S2O3 0,002N nếu mẫu có chỉ số Peroxyt nhỏ, hoặc dung dịch Na2S2O3 0,01N cho mẫu có chỉ số Peroxyt lớn hơn 12 meq/kg, đến khi mất màu tím đặc trưng của Iod. Lặp lại thí nghiệm 3 lần. Tiến hành đồng thời thí nghiệm kiểm chứng, thay chất béo bằng 3 – 5 mL nước cất. Nếu kết quả của mẫu trắng vượt quá 0,1mL dung dịch Na2S2O3 0,01N thì đổi hóa chất do không tinh khiết. 6. Tính kết quả: m NTVVPoV 1000)( 21 ×××−= Với: PoV – chỉ số peroxyt, Meq / Kg V1 – số mL Na2S2O3 dùng định phân mẫu thí nghiệm V2 – số mL Na2S2O3 dùng định phân mẫu kiểm chứng T – hệ số hiệu chỉnh nồng độ của Na2S2O3, T=1 nếu pha từ ống chuẩn m – khối lượng mẫu thí nghiệm, g N – nồng độ đương lượng gam của Na2S2O3 Phép thử được tiến hành trong ánh sáng ban ngày khuyếch tán hoặc ánh sáng nhân tạo, tránh tia cực tím. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 18 Bài 4 PHẦN 1: XÁC ĐỊNH HOẠT TÍNH ENZYM AMYLASE THEO WOHLGEMUTH I. Nguyên tắc: Phương pháp dựa vào tìm nồng độ enzym thấp nhất có thể thủy phân tinh bột đến erytrodextrin. Đơn vị Wohlgemuth là lượng enzym cần thiết để thủy phân 1 mg tinh bột sau 30 phút ở 370C có Cl- làm chất hoạt hóa. II. Dụng cụ và hoá chất: 11 ống nghiệm, pipet 1ml (4 cái), tủ ấm, NaCL 0,5%, tinh bột 0,5%, H2SO4 10%, Iod 0,3% trong KI 3%. III. Tiến hành: 1. Chuẩn bị dịch chiết amylase. Cân 10 g malt (hạt đại mạch), đem nghiền nhuyễn, chuyển vào bình định mức 100ml, định mức đến 100ml, lắc thất kỹ. Ngâm 15 phút, thỉnh thoảng lắc đều bình định mức. Lọc qua 2 tờ giấy lọc mịn, thu được dịch trong suốt chứa enzym amylase. 2. Tiến hành khảo sát hoạt tính amylase. Lấy 10 ống nghiệm đánh số thứ tự. Hút vào mỗi ống nghiệm 1 ml dung dịch NaCl 0,5%. Trong ống nghiệm 1 cho vào 1ml dung dịch amylase và lắc kỹ. Sau đó lấy 1 ml từ ống nghiệm 1 cho vào ống nghiệm TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 19 2, lắc kỹ và lắp lại cho tới ống nghiệm 10 thì hút 1ml và bỏ đi. Trong mỗi ống nghiệm cho vào 1 ml dung dịch hồ tinh bột 0,5% lắc đễu, để vào tủ điều nhiệt ở 370C. Sau 30 phút lấy ra, thêm vào mỗi ống 1 ml H2SO4 10% và 2 giọt iod trong KI lắc đều. Kết quả được thể hiện trong bảng, có đánh dấu xanh ( x ), đỏ ( đ) , nâu ( n ), vàng (v ). Ống nghiệm 1 2 3 4 5 6 7 8 9 10 Độ pha loãng 2 4 8 16 32 64 128 256 512 1024 Nồng độ enzym n/2 n/4 n/8 n/16 n/32 n/64 n/128 n/256 n/512 n/1024 Màu Lấy 1 ống nghiệm khác (ống thứ 11) cho vào 3 ml nước cất, 2 giọt thuốc thử Iod và so sánh với màu của 10 ống nghiệm trên để xác định ống có nồng độ enzym amylase thấp nhất thủy phân hoàn toàn tinh bột. 3. Tính kết quả: – Lượng enzym được cho vào ống nghiệm (1): 2 1 V Vm n × = Trong đó: V1- Thể tích dịch chiết enzym cho vào ống nghiệm (1) (1ml) V2- Thể tích dịch chiết enzym (100 ml ) m- Lượng mẫu cân vật phẩm chứa enzym (mg) TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 20 Một đơn vị Wohlgemuth (W): 5× = F nW Trong đó : F- Độ pha loãng của ống nghiệm có nồng độ enzym thấp nhất thủy phân hoàn toàn tinh bột (Ống nghiệm có màu trùng với màu của ống nghiệm 11). Số đơn vị Wohlgemuth có trong 1 ml dịch chiết enzym ( NW): WV nNW × = 1 PHẦN 2: XÁC ĐỊNH HÀM LƯỢNG VITAMIN C I. Nguyên tắc: Acid ascorbic (Vitamin C) là một hợp chất chưa no có chứa nhóm endiol. Acid ascorbic bị phá hủy rất nhanh dưới tác dụng của các chất oxy hóa và bền trong môi trường acid. Phương pháp dựa trên nguyên tắc là acid ascorbic có khả năng oxy hóa khử thuận nghịch nhờ trong phân tử của nó chứa nhóm endiol. C C OHOH Vì vậy acid ascorbic được xác định bằng phương pháp chuẩn độ với KIO3/KI theo các phản ứng sau: TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 21 KIO3 + 5KI + 6HCl 3I2 + 6KCl + 3H2O O C C C C C OH OH H O O C C C C C O O H O CH2OH CH2OH HO HO HH + I2 + 6HI Acid ascorbic Acid dehydroascorbic KIO3 + 5KI + 6HCl + 3C6H8O6 3C6H6O6 + 6KCl + 3H2O + 6HI II. Hoá chất- dụng cụ: – Cối chày sứ – Bình định mức 100 ml – Phễu thủy tinh Ф 6 cm – Pipette 10 ml – Cốc thủy tinh 100 ml – Burette 25 ml – Erlen 50 ml – HCl 1% – KIO3/KI 0.001N – Hồ tinh bột 1% TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 22 III. Tiến hành: Cân lấy vào cối sứ lượng mẫu thí nghiệm ( chanh, cam, sơri, ớt, cà chua) chính xác khoảng 3 g. Thêm một lượng HCl 1% vừa đủ vào cối để mẫu thí nghiệm được ngâm kín hoàn toàn trong dung dịch acid. Nghiền cẩn thận mẫu nguyên liệu. Chuyển toàn bộ hỗn hợp vào bình định mức 100 ml. Định mức đến vạch bằng dung dịch HCl 1%. Nếu mẫu ở dạng dịch lỏng, không cần qua giai đoạn nghiền, chuyển ngay vào bình định mức. Lấy vào erlen 10 ml dung dịch có chứa vitamin C từ bình định mức (nếu khó hút vì vướng bã thì đổ dung dịch có chứa vitamin C từ bình định mức ra cốc 100 ml, chờ bã nổi lên phía trên hoặc xuống dưới thì đặt đầu pipet vào khoảng giữa không vướng bã thực hiện hút mẫu), thêm vài giọt hồ tinh bột 1% và đem định phân bằng KIO3/KI 0.001N tới khi xuất hiện màu xanh đen. Tiến hành song song các mẫu kiểm chứng. Hút 10ml dung dịch HCl 1% thêm vài giọt hồ tinh bột 1% và đem định phân bằng KIO3/KI 0.001N tới khi xuất hiện màu xanh đen. Phải tiến hành ít nhất hai mẫu thí nghiệm, mỗi mẫu định phân ba lần, kết quả hai lần định phân không được sai lệch quá 0.03 ml. TH HÓA HỌC THỰC PHẨM 2006-2007 Hệ Đại Học 23 IV. Tính kết quả: Hàm lượng vitamin C trong mẫu thí nghiệm được tính bằng công thức: X = (a – b)x0.088x100x100 10.m Trong đó: X: Hàm lượng vitamin C (mg/100g) a: Số ml KIO3/KI 0.001N dùng định phân dịch chiết vitamin C b: Số ml KIO3/KI 0.001N dùng định phân mẫu kiểm chứng 100: Thể tích bình định mức (ml) m: Lượng mẫu thí nghiệm (g) 0.088: Số mg acid ascorbic ứng với 1 ml dung dịch KIO3/KI 0.001N

Phương Pháp Cân Bằng Các Phản Ứng Oxi Hóa Khử

Nội dung 1: Số oxi hoá, cách tính số oxi hóa của nguyên tố trong một hợp chất hóa học

o Số oxi hóa của nguyên tố trong phân tử là điện tích của nguyên tử nguyên tố đó trong phân tử, khi giả thiết rằng liên kết giữa các nguyên tử trong phân tử là liên kết ion.

o Quy tắc tính số oxi hóa:

* Trong đơn chất, số oxi hóa nguyên tố bằng 0:.

Phương pháp cân bằng pư oxi hóa khử (sưu tầm+tổng hợp) Nội dung 1: Số oxi hoá, cách tính số oxi hóa của nguyên tố trong một hợp chất hóa học Số oxi hóa của nguyên tố trong phân tử là điện tích của nguyên tử nguyên tố đó trong phân tử, khi giả thiết rằng liên kết giữa các nguyên tử trong phân tử là liên kết ion. Quy tắc tính số oxi hóa: Trong đơn chất, số oxi hóa nguyên tố bằng 0:. Tổng đại số số oxi hoá của các nguyên tử trong phân tử (trung hoà điện) bằng 0. Tổng đại số số oxi hoá của các nguyên tử trong một ion phức tạp bằng điện tích của ion đó. Khi tham gia hợp chất, số oxi hoá của một số nguyên tố có trị số không đổi: H là +1, O là -2 … Chú ý: Dấu của số oxi hoá đặt trước con số, còn dấu của điện tích ion đặt sau con số (số oxi hóa Fe+3 ; Ion sắt (III) ghi: Fe3+ Nội dung 2: Các phương pháp cân bằng phản ứng oxi hoá khử Phương pháp 1: Phương pháp đại số Nguyên tắc: Số nguyên tử của mỗi nguyên tố ở hai vế phải bằng nhau. Các bước cân bằng Đặt ẩn số là các hệ số hợp thức. Dùng định luật bảo toàn khối lượng để cân bằng nguyên tố và lập phương trình đại số. Chọn nghiệm tùy ý cho 1 ẩn, rồi dùng hệ phương trình đại số để suy ra các ẩn số còn lại. Ví dụ: a FeS2 + b O2→ c Fe2O3 + d SO2 Ta có: Fe : a = 2c S : 2a = d O : 2b = 3c + 2d Chọn c = 1 thì a=2, d=4, b = 11/2 Nhân hai vế với 2 ta được phương trình: 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 Phương pháp 2: phương pháp cân bằng electron Nguyên tắc: dựa vào sự bảo toàn electron nghĩa là tổng số electron của chất khử cho phải bằng tổng số electron chất oxi hóa nhận. Các bước cân bằng: Bước 1: Viết sơ đồ phản ứng với các nguyên tố có sự thay đổi số oxi hóa. Bước 2: Viết các quá trình: khử (cho electron), oxi hóa (nhận electron). Bước 3: Cân bằng electron: nhân hệ số để: Tổng số electron cho = tổng số electron nhận. (tổng số oxi hóa giảm = tổng số oxi hóa tăng). Bước 4: Cân bằng nguyên tố không thay đổi số oxi hoá (thường theo thứ tự: kim loại (ion dương): gốc axit (ion âm). môi trường (axit, bazơ). nước (cân bằng H2O để cân bằng hiđro). Bước 5: Kiểm soát số nguyên tử oxi ở 2 vế (phải bằng nhau). Lưu ý: Khi viết các quá trình oxi hoá và quá trình khử của từng nguyên tố, cần theo đúng chỉ số qui định của nguyên tố đó. Ví dụ: Fe + H2SO4 đặc nóng → Fe2(SO4)3 + SO2 + H2O Fe0 → Fe+3 + 3e 1 x 2Fe0 → 2Fe+3 + 6e 3 x S+6 + 2e → S+4 2Fe + 6H2SO4 → Fe2(SO4)3 + 3SO2 + 6H20 Phương pháp 3: phương pháp cân bằng ion – electron Phạm vi áp dụng: đối với các quá trình xảy ra trong dung dịch, có sự tham gia của môi trường (H2O, dung dịch axit hoặc bazơ tham gia). Các nguyên tắc: Nếu phản ứng có axit tham gia: vế nào thừa O phải thêm H+ để tạo H2O và ngược lại. Nếu phản ứng có bazơ tham gia: vế nào thừa O phải thêm H2O để tạo ra OH- Các bước tiến hành: Bước 1: Tách ion, xác định các nguyên tố có số oxi hóa thay đổi và viết các nửa phản ứng oxi hóa – khử. Bước 2: Cân bằng các bán phản ứng: Cân bằng số nguyên tử mỗi nguyên tố ở hai vế: Thêm H+ hay OH- Thêm H2O để cân bằng số nguyên tử hiđro Kiểm soát số nguyên tử oxi ở 2 vế (phải bằng nhau). Cân bằng điện tích: thêm electron vào mỗi nửa phản ứng để cân bằng điện tích Bước 3: Cân bằng electron: nhân hệ số để: Tổng số electron cho = tổng số electron nhận. (tổng số oxi hóa giảm = tổng số oxi hóa tăng). Bước 4: Cộng các nửa phản ứng ta có phương trình ion thu gọn. Bước 5: Để chuyển phương trình dạng ion thu gọn thành phương trình ion đầy đủ và phương trình phân tử cần cộng vào 2 vế những lượng bằng nhau các cation hoặc anion để bù trừ điện tích. Ví dụ: Cân bằng phương trình phản ứng: Cu + HNO3 → Cu(NO3)2 + NO + H2O Bước 1: Cu + H+ + NO3- → Cu2+ + 2NO3- + NO + H2O Cu0 → Cu2+ NO3- → NO Bước 2: Cân bằng nguyên tố: Cu → Cu2+ NO3- + 4H+ → NO + 2H2O Cân bằng điện tích Cu → Cu2+ + 2e NO3- + 4H+ + 3e → NO + 2H2O Bước 3: Cân bằng electron: 3 x Cu → Cu2+ + 2e 2 x NO3- + 4H+ + 3e → NO + 2H2O Bước 4: 3Cu + 2NO3- + 8H+ → 3Cu2+ + 2NO + 4H2O Bước 5: 3Cu + 8HNO3 → 3Cu(NO3)2 + 2NO +4H2O Nội dung 3: Các dạng phản ứng oxi hóa khử phức tạp 1. Phản ứng oxi hoá khử có hệ số bằng chữ Nguyên tắc: Cần xác định đúng sự tăng giảm số oxi hoá của các nguyên tố Ví dụ: Fe3O4 + HNO3 → Fe(NO3)3 + NxOy + H20 (5x – 2y) x 3Fe+8/3 → 3Fe+9/3 + e 1 x xN+5 + (5x – 2y)e → xN+2y/x (5x-2y)Fe3O4+ (46x-18y)HNO3 → (15x-6y)Fe(NO3)3+NxOy+(23x-9y)H2O 2. Phản ứng có chất hóa học là tổ hợp của 2 chất khử Nguyên tắc : Cách 1 : Viết mọi phương trình biểu diễn sự thay đổi số oxi hoá, chú ý sự ràng buộc hệ số ở hai vế của phản ứng và ràng buộc hệ số trong cùng phân tử. Cách 2 : Nếu một phân tử có nhiều nguyên tố thay đổi số oxi hoá có thể xét chuyển nhóm hoặc toàn bộ phân tử, đồng thời chú ý sự ràng buộc ở vế sau. Luyện tập: Cân bằng phản ứng sau : FeS2 + O2 → Fe2O3 + SO2 Fe+2 → Fe+3 + 1e 2S-1 → 2S+4 + 2.5e 4 x FeS2 → Fe+3 +2S+4 + 11e 11 x 2O0 + 4e → 2O 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 3. Phản ứng có nguyên tố tăng hay giảm số oxi hoá ở nhiều nấc Nguyên tắc : Cách 1 : Viết mọi phương trình thay đổi số oxi hoá, đặt ẩn số cho từng nấc tăng, giảm số oxi hoá. Cách 2 : Tách ra thành hai hay nhiều phương trình ứng với từng nấc số oxi hóa tăng hay giảm. Ví dụ: Cân bằng phản ứng sau: Al + HNO3 → Al(NO3)3 + NO + N2O + H2O Cách 1: (3x + 8y) x Al0 → Al+3 + 3e 3 x xN+5 + 3xe → xN+5 3 x 2yN+5 + 8ye → 2yN+1 (3x+8y)Al +(12x+30y)HNO3→(3x+8y)Al(NO3)3+3xNO+3yNO2+(6x+15y)H2O Cách 2: Tách thành 2 phương trình : a x Al + 4HNO3 → Al(NO3)3 + NO + 2H2O b x 8Al + 30 HNO3 → 8Al(NO3)3 +3N2O + 15H2O (a+8b)Al + (4a+30b)HNO3 → (a+8b)Al(NO3)3 + a NO + 3b N2O+(2a+15b)H2O 4. Phản ứng không xác định rõ môi trường Nguyên tắc: Có thể cân bằng nguyên tố bằng phương pháp đại số hoặc qua trung gian phương trình ion thu gọn. Nếu do gom nhiều phản ứng vào, cần phân tích để xác định giai đoạn nào là oxi hóa khử. Ví dụ: Al + H2O + NaOH → NaAlO2 + H2 Al + H20 → Al(OH)3 + H2 2 x Al0 → Al+3 + 3e 3 x 2H+ + 2e → H2 2Al + 6H20 → 2Al(OH)3 + H2 (1) 2Al(OH)3 + 2NaOH → 2NaAlO2 + 4H20 (2) Tổng hợp 2 phương trình trên: 2Al + 2NaOH + 2H2O → 2NaAlO2 + 3H2

Một Số Phương Pháp Cân Bằng Phản Ứng Oxi Hóa Khử

Nguyên tắc chung để cân bằng phản ứng oxi hóa khử là số điện tử cho của chất khử phải bằng số điện tử nhận của chất oxi hóa hay số oxi hóa tăng của chất khử phải bằng số oxi hóa giảm của chất oxi hóa. Bài viết hướng dẫn bạn đọc một số cách cân bằng phản ứng oxi hóa khử phổ biến.

1. Phương pháp nguyên tử nguyên tố

Để tạo thành 1 phân tử P 2O 5 cần 2 nguyên tử P và 5 nguyên tử O:

2. Phương pháp hóa trị tác dụng

Hóa trị tác dụng là hóa trị của nhóm nguyên tử hay nguyên tử của các nguyên tố trong chất tham gia và tạo thành trong PUHH.

Áp dụng phương pháp này cần tiến hành các bước sau:

+ Xác định hóa trị tác dụng:

II – I III – II II-II III – I

Hóa trị tác dụng lần lượt từ trái qua phải là:

II – I – III – II – II – II – III – I

Tìm bội số chung nhỏ nhất của các hóa trị tác dụng:

+ Lấy BSCNN chia cho các hóa trị ta được các hệ số:

6/II = 3, 6/III = 2, 6/I = 6

Thay vào phản ứng:

Dùng phương pháp này sẽ củng cố được khái niệm hóa trị, cách tính hóa trị, nhớ hóa trị của các nguyên tố thường gặp.

3. Phương pháp dùng hệ số phân số

Đặt các hệ số vào các công thức của các chất tham gia phản ứng, không phân biệt số nguyên hay phân số sao cho số nguyên tử của mỗi nguyên tố ở hai vế bằng nhau. Sau đó khử mẫu số chung của tất cả các hệ số.

+ Nhân các hệ số với mẫu số chung nhỏ nhất để khử các phân số. Ỏ đây nhân 2.

4. Phương pháp “chẵn – lẻ”

Một phản ứng sau khi đã cân bằng thì số nguyên tử của một nguyên tố ở vế trái bằng số nguyên tử nguyên tố đó ở vế phải. Vì vậy nếu số nguyên tử của một nguyên tố ở một vế là số chẵn thì số nguyên tử nguyên tố đó ở vế kia phải chẵn. Nếu ở một công thức nào đó số nguyên tử nguyên tố đó còn lẻ thì phải nhân đôi.

Đó là thứ tự suy ra các hệ số của các chất. Thay vào PTPU ta được:

5. Phương pháp xuất phát từ nguyên tố chung nhất

Chọn nguyên tố có mặt ở nhiều hợp chất nhất trong phản ứng để bắt đầu cân bằng hệ số các phân tử.

Nguyên tố có mặt nhiều nhất là nguyên tố oxi, ở vế phải có 8 nguyên tử, vế trái có 3. Bội số chung nhỏ nhất của 8 và 3 là 24, vậy hệ số của HNO 3 là 24 /3 = 8

Vậy phản ứng cân bằng là:

6. Phương pháp cân bằng electron

Cân bằng qua ba bước:

a. Xác định sự thay đổi số oxi hóa.

b. Lập thăng bằng electron.

c. Đặt các hệ số tìm được vào phản ứng và tính các hệ số còn lại.

Ví dụ. Cân bằng phản ứng:

a. Xác định sự thay đổi số oxi hóa:

(Viết số oxi hóa này phía trên các nguyên tố tương ứng)

b. Lập thăng bằng electron:

c. Đặt các hệ số tìm được vào phản ứng và tính các hệ số còn lại:

Ví dụ 2. Phản ứng trong dung dịch bazo:

Phương trình ion:

Phương trình phản ứng phân tử:

Ví dụ 3. Phản ứng trong dung dịch có H 2 O tham gia:

Phương trình ion:

Phương trình phản ứng phân tử:

7. Phương pháp cân bằng đại số

Dùng để xác định hệ số phân tử của chất tham gia và thu được sau phản ứng hoá học, ta coi hệ số là các ẩn số và kí hiệu bằng các chữ cái a, b, c, d… rồi dựa vào mối tương quan giữa các nguyên tử của các nguyên tố theo định luật bảo toàn khối lượng để lập ra một hệ phương trình bậc nhất nhiều ẩn số. Giải hệ phương trình này và chọn các nghiệm là các số nguyên dương nhỏ nhất ta sẽ xác định được hệ số phân tử của các chất trong phương trình phản ứng hoá học.

Ví dụ: Cân bằng phản ứng:

Kí hiều các hệ số phải tìm là các chữ a, b, c, d, e và ghi vào phương trình ta thu được:

+ Xét số nguyên tử Cu: a = c (1)

+ Xét số nguyên tử H: b = 2e (2)

+ Xét số nguyên tử N: b = 2c + d (3)

+ Xét số nguyên tử O: 3b = 6c + d + e (4)

Ta được hệ phương trình 5 ẩn và giải như sau:

Rút e = b/2 từ phương trình (2) và d = b – 2c từ phương trình (3) và thay vào phương trình (4):

3b = 6c + b – 2c + b/2

Ta thấy để b nguyên thì c phải chia hết cho 3. Trong trường hợp này để hệ số của phương trình hoá học là nhỏ nhất ta cần lấy c = 3. Khi đó: a = 3, b = 8, d = 2, e = 4

Vậy phương trình phản ứng trên có dạng:

Như vậy khi lập một hệ phương trình đại số để cân bằng một phương trình hoá học, nếu có bao nhiêu chất trong phương trình hoá học thì có bấy nhiêu ẩn số và nếu có bao nhiêu nguyên tố tạo nên các hợp chất đó thì có bấy nhiêu phương trình.